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1 Introduction and main resulats

In the previous decades, the development of p-adic analysis is becoming more and more rapid
and rich, which depends on its powerful applications. Among them, the application in physics
focuses on the theory of p-adic strings and complex disordered systems-spin glasses, and quan-
tum mechanics [1, 2, 19]. Besides, it also has substantial important applications in biology and
geology, exactly speaking, mathematical methods on p-adic analysis can ofen reveal some bio-
logical phenomena [4, 11], and the theory of p-adic analysis can also deal with fractal problem
in geology [6, 7].

We now first introduce some fundamental notions on p-adic field. Let Z be the field of
integer. For a fixed prime number p, the p-adic field Q,, which originally given by K. Hensel

in 1897, is composed of the rational numbers field Q with respect to non-Archimedean p-adic

a

b
not divisible by p, the p-adic absolute value is |z|, = p™7.

absolute value: let x = p7%, where x € Q and v € Z, a and b are non-zero integers which are

It is well known that the non-Archimedean p-adic absolute value has many properties similar

to the Archimedean absolute value, for instance, positive definiteness, product properties and
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non-Archimedean p-adic absolute value inequality. Exactly speaking, these properties are shown

as follows.

(1) |x|p, > 0. Specially, |z|, = 0 if and only if z = 0;

(2) [zylp = |2[p|ylp;

(3) |z +ylp < max{|z|p, |y|p}. If |z|p # |y|p. then the equality holds and the converse is also true.
Combining Properties (1) and (3), we also obtain the same triangle inequality as Archimedean

absolute value, namely, |z + yl|, < |z|, + |yp-

From the standard p-adic analysis, nonzero p-adic number x can be written as:

)
x = p(ap + arp + azp* + - - -) :pVZajpj, aj=0,---,p—1,
§=0
where |z|, = p~ when a,, # 0. Naturally, the above p-adic number x converges.

In the next time, we need to further consider the n-dimensional p-adic linear space Qj,
when n = 1, this case is shown in the description above. For any n-dimensional vector z =
(x1,22,-,+,,Tn), where z; € Q, (i = 1,...,n), then the following p-adic absolute value is given
by

[olp = max |zlp.

Finally, the p-adic ball is denoted by
By(a) ={x e Qy: |z —al, <p'},

where the center of p-adic ball a € Q) and radius p7 with v € Z. The p-adic corresponding
sphere is denoted by

Sy(a) = {x € Q) : [ — al, = 7} = By(a) \ By-1(a).

Specially, if a,y = 0, then the By(0) and Sp(0) are called the p-adic unit ball and p-adic unit
sphere, respectively.

Moreover, when a = 0, we usually omit the center of p-adic ball and sphere. From the
definition of p-adic ball and sphere, we observe a relation between them, exactly speaking,
B,(a) = Uy<, Sk(a) and Q) \ {0} = U,z 5. For any ap € Qp and v € Z, it is not difficult to

obtain the following equalities
ap+ By, = B,(ap) and ag + S, = S,(ag) = By(ag) \ By—1(aop).

For the sake of simplicity, we define the characteristic function xx = xs, = XB,\B,_, -
Since Q) is a locally compact commutative group under addition, there exists Haar measure

on Qy, it is easy to know that unique Haar measure dz on Q} (up to positive constant multiple)



are translation invariant (i.e.,d(z 4+ a) = dz). Then we integrate on p-adic unit ball firstly, such
that

/ dr = ’B()’h = 1,
Bo

where | Byl is denoted by the Haar measure of p-adic unit ball. Generally speaking, for any
a € Q) and v € Z, we have

/ dz = |B(a)| = p™
By(a)
and
/g A= 181 @l =70 ) = 1B @) 1By @l
~(a

For more details about the p-adic analysis, we refer readers to [18, 19] and references therein.

It is well-known that the study of operator theory has caught a lot of attention due to many
applications in partial differential equations and harmonic analysis, where the main concern is
its boundedness in different spaces. In this article, the studies are oriented to the following
p-adic fractional integral operator.

Let 0 < a < n, we define the p-adic fractional integral operator as

(e = [ LY

ap [z —ylp™*

As a vast branch of harmonic analysis, the space of variable functions is a generalization of
some classical function spaces, such as the variable exponent Lebesgue space is a generalization
of the classical Lebesgue space, and the Herz-Morrey space is a generalization of the Herz space.
On the one hand, Cortés and Rafeiro [8] introduced p-adic version of variable exponent Lebesgue
spaces, and obtained many properties and application. The boundedness of the fractional inte-
gral operator and fractional maximal operator was obtained in [10]. On the other hand, Sarfraz,
Aslam, Zaman, and Jarad [13] obtained the estimates for fractional integral operator on the
p-adic Herz-Morrey space. Recently, the grand function space with variable exponent have a
positive development trend. In the Euclidean spaces, the boundedness of fractional integral op-
erator on grand Herz-Morrey spaces was given in [14]. Sultan et al. [15] defined the grand p-adic
Herz-Morrey spaces with variable exponent and obtained the boundedness of an intrinsic square
function. Therefore, the study of p-adic grand Herz-Morrey spaces with variable exponent in
p-adic linear spaces is quite a few, which look worthy of further investigations.

Inspired by the aforementioned literature, the key consideration is p-adic fields Qy, in a few

cases it can be also indicated that our work is motivated by the standard harmonic analysis



on the Fuclidean space. The purpose of this paper is to study the boundedness for fractional
integral operator and fractional maximal operator in the context of the p-adic version of Herz-
Morrey spaces with variable exponent, as well as the Lipschitz estimates for the commutators
of fractional integral operator, fractional maximal operator and sharp maximal function on the
grand p-adic version of Herz-Morrey spaces with variable exponent.

Naturally, we first need to consider the follwing result of boundedness of the fractional

integral operator I on the p-adic vector spaces.

Theorem 1.1 Let 1 < u < 00, 0 < A < 00, 0 < a < n, for all n(-), qi(:), ¢(-) €
¢2(Qp), with () € 2(Q}), (q1)+ < n/a, and 1/g2() = 1/qi(-) — a/n. If n(-) is satisfying
the following conditions

(W) A+ a—nja() <n() <n/d(),

(2) A+ a = nfar(o0) < 1) < n/dy(00).

Then 1% is bounded from MKZ,(qi’ZL))’G(QZ) to ]\IK;\7 s (Q”)

Remark 1 For the results of the aforementioned case in Euclidean space, see [14].

On the one hand, when 7(-), ¢1(-), and g2(+) in theorem 1.1 are both constant exponent, this

results are still new.

Corollary 1.1 Let 1 < u < oo, 0 <A <00, 0<a<mn,forall g, go with 1 < ¢ <
n/aand 1/go =1/q1 —a/n. If a+X—n/q <n < n/q;. Then I} is bounded from MKg’ql’ (@)
to MEJ(@p).

For the case of A = 0 in the corollary 1.1, it reveals the boundedness of p-adic fractional

integral operator on grand Herz spaces.

Corollary 1.2 Let 1 <u < o0, 0 < a < m,, for all 1, g2 with 1 < g1 < n/a and 1/q2 =
/g —a/n. If a—n/q <n<n/q,. Then I} is bounded from Kgl’“)’a((@g) to Kgg“)’g(Qg).

On the other hand, for the case of A = 0 in the theorem 1.1, the boundedness of the fractional

integral operator on grand p-adic variable Herz space is obtained and it is even new.

Corollary 1.3 Let 1 <u < o0, 0 <a <n, forall (), q1(-), g2(-) € €"°5(Q}) with q1(-) €
2(Qy), (@1)+ <n/a, and 1/g2(-) = 1/q1(-) — a/n. If n(-) is satisfying the following conditions

(1) a—n/q(-) <n() <n/q (),

(2) a —n/q(c0) <n(-) < n/g(c0).

Then I} is bounded from Kn(())u)’e((@ ) to K77 (Q”)

For the case of n(-) be a constant exponent, this result is also even new in p-adic vector

space.



Corollary 1.4 Let 1 < u < 00, 0 < a < n, for all qi(+), ¢(-) € Célog(@g) with ¢1(-) €
2(Qy), (@1)+ <n/a, and 1/g2() = 1/q1(-) — a/n. If 7 is satisfying the following conditions
(1) a—nfar() <0 < n/di()
(2) & — n/ai(o0) < 1 < n/g) ().
Then I% is bounded from K;’l?))e((@;}) to K;’;))Q(QQ)

Let 0 < a < n, we define the p-adic fractional maximal operator as

1

M) =sup s [ |f0)ld
V€L | By ()], ™ 7 By(@)

where the supremum is taken over all p-adic balls B, (z) C Qj.

Then the maximal commutator of M¥ with b is given by

1
ML) = [ o) = b))y,
V€L |By(x)|, ™ /By(@)
where the supremum is taken over all p-adic balls B, (r) C Qj.
Moreover, assume that b : Q) — R and f : Q) — R are measurable mappings, then the

nonlinear commutators of fractional maximal operator can be defined as follows:

[b, MZ]f () = () ME(f) (x) — MEDS) ().

If @ =0, we have [b, MP] = [b, M{] and M} = M{,.
Inspired by Sobolev inequality, the boundedness of the following fractional maximal operator

on the grand p-adic Herz-Morrey space with variable exponent is given.

Theorem 1.2 Let 1 < u < 00, 0 < A < 00, 0 < a < n, for all n(-), qi(-), ¢(-) €
%bg((@;‘) with ¢1(-) € 2(Qp), (@1)+ < n/a, and 1/ga(-) = 1/q1(-) — a/n. If n(-) is satisfying
the following conditions

(1) a+A=n/q() <n() <n/q(),

(2) a+ A —n/q(o0) <n(-) <n/q(c0),

Then MY is bounded from MK;g)l’(f’f))’g(Qg) to MK;]fql’ZL))’G(Qg)
On the one hand, when 7n(-), ¢1(-), and g2(+) in theorem 1.2 are both constant exponent, this

results are still new.

Corollary 1.5 Let 1 < u <00, 0 < A < o0, 0 < a <mn, forall g, go with 1 < ¢1 <
n/aand 1/go = 1/q1—a/n. If a+A—n/q < n < n/q;. Then MY is bounded from MK”’U)’H(QZ)

Aqu
I 79
to MET(Qp).

For the case of A = 0 in the corollary 1.5, it reveals the boundedness of p-adic fractional

maximal operator on grand Herz spaces.



Corollary 1.6 Let 1 < u < oo, 0 < a < n, for all ¢g;, ¢ with 1 < 1 < n/a and 1/q2 =
/¢ — a/n. If a —n/q <n <n/q;. Then MY is bounded from Kglu (Qp) to ngu (Q@p)-

On the other hand, for the case of A = 0 in the theorem 1.2, the boundedness of the fractional

maximal operator on grand p-adic variable Herz space is obtained and it is even new.

Corollary 1.7 Let 1 <u < o0, 0 < a <n, for all n(-), q1(-), ¢(-) € ‘glog(Qg) with ¢1(-) €
2(Qp), (q1)+ <n/a, and 1/g2() = 1/q1(-) — a/n. If n(-) is satisfying the following conditions
(1) a=n/q() <n(-) <n/q(),
@) e~ n/0(29) <) < (<),
Then MY is bounded from Kn() (Q”) to K17 (Q")

For the case of n(-) be a constant exponent, this result is also even new in p-adic vector

space.

Corollary 1.8 Let 1 < u < o0, 0 < a < n, for all qi(-), q2(-) € €"8(Qp) with qi(-) €
@(QZ)’ (q1)+ <n/a, and 1/q2(-) = 1/q1(-) — a/n. If n is satisfying the following conditions

(D) a=n/q(-) <n<n/d(),

(2) a —n/q(c0) <n<n/dg(c0),

and 0 < 7. Then M} is bounded from Kg’( ) (Q") K;Z( )

‘(@)
Furthermore, assume that b : Q) — R and f: Q) — R are measurable mappings, then the

commutators of fractional integral operator can be defined as follows:

(b(z) = b(y))f(y) dy. (1.1)
lz —ylp™ @

[0, I5](f) (@) = b(2) IZ f () = 15(bf)(x) = /n

Now, we give the Lipschitz estimates for the (nonlinear) commutator of fractional integral
operator and fractional maximal operator on the grand p-adic Herz-Morrey space with variable

exponent.

Theorem 1.3 Let 1 <u< o0, 0<A<o0, 0<a<a+pf<n, andbe Ag(Qy) (0<8 <
1), for all (), qi(-), g2(-) € €"8(QY) with q1(-) € 2(Q}), (q1)+ < n/(a+ B), and 1/ga(-) =
1/q1(-) — (e + B)/n. If n(-) is satisfying the following conditions

(1) Ao+ B—n/a() <n() <n/d¢(),

(2) A+a+B—n/q(xo )<n()<n/q1( )-

Then [b, I2] is bounded from MK} (Q") to MK;7 N (Q”)

On the one hand, when 7n(-), ¢1(-), and g2(-) in theorem 1.3 are both constant exponent, this

results are still new.



Corollary 1.9 Let 1 <u<o00, 0<A <00, 0<a<a+f<n, andbe Ag(Qp) (0<8<
1), for all ¢, g2 with 1 < ¢1 < n/(a+ ) and I/Q2—1/q1 (a+ﬁ)/n fX+a+p—-—n/q <

1 < n/q;. Then [b, I8] is bounded from MK} ) (@”) to MK} ;; Q).

For the case of A = 0 in the corollary 1.9, it reveals the boundedness from the commutator

of p-adic fractional integral operator on grand Herz spaces.

Corollary 1.10 Let 1 <u < o0, 0 <a < a+f <n, and b € Ag(Qp) (0 < g < 1), for
all ¢1, g2 with 1 < 1 < n/(a+5) and 1/qp = 1/q1 (a+B)/n. Mt a+p—n/g <n <
n/q;. Then [b, I] is bounded from Kgl’ ’ (Q”) to ngu Q).

On the other hand, for the case of A = 0 in the theorem 1.3, the boundedness for the
commutator of fractional integral operator on grand p-adic variable Herz space is obtained and

it is even new.

Corollary 1.11 Let 1 Su < o0, 0 <a<a+ 8 <n, and b € Ag(Qy) (0 < < 1), for all
1(), a1()s @2() € €°%(Qp) with q1(-) € Z(Q}). (a1)+ < n/(a+p), and 1/g2() = 1/qu(") —
(o + B)/n. If n(-) is satistying the following conditions

(1) a+B—=n/a() <n(-) <n/q(),

(2) a+ 8 —n/q(0) < 77()<”/(11( )-

Then [b, I%] is bounded from K77 u 9(@”) to KZ2( (Q")

For the case of n(-) be a constant exponent, this result is also even new in p-adic vector

space.

Corollary 1.12 Let 1 S u < oo, 0 <a<a+f <n, and b € Ag(Q}) (0 < B < 1), for
all q1(), @2(-) € €'°8(Qy) with a1(-) € 2(Q}), (@)+ < n/(a+p), and 1/g2(-) = 1/q1(-) —
(o + B)/n. If n is satisfying the following conditions

(1) a+B—n/qa(-) <n<n/q(),

(2) a+ B —n/q(c0) <n < n/q(0).

Then [b, I£] is bounded from K")%(Qp) to K20%(@p).

According to the aforementioned theorem, naturally, we give the following result and it is

even new.

Theorem 1.4 Let 1 <u<oo, 0<A<o0, 0<a<a+pf<n, andbe Ag(Qy) (0<B<
1), for all (), a1(-), a2() € €°%(Q}) with q1(-) € 2(Q}). (a1)+ < n/(a+ ), and 1/ga() =
1/q1(-) — (o + B)/n. If n(-) is satisfying the following conditions

M) A+a+B=n/a() <n() <n/q(),

(2) A+ a+B—n/qu(xo) < n()<n/ql( )-

Then M? o5 18 bounded from ]\4K77 (Q") to ]WK;\7 (- (Qn)



On the one hand, when 7(-), ¢1(-), and g2(+) in theorem 1.4 are both constant exponent, this

results are still new.

Corollary 1.13 Let 1 Su<oo, 0<A<oo, 0<a<a+f<n, and be Ag(Qy) (0 <
B < 1), forall g, ggwithl < ¢ <n/(a+p)and 1/gs = l/ql—(oH—ﬁ)/n. IfA+a+8—n/qg <

7 <n/q;. Then M} is bounded from MK Zl 6(@") to MK} 3;2 G(Q”)

For the case of A = 0 in the corollary 1.13, it reveals the boundedness for commutator of

p-adic fractional maximal operator on grand Herz spaces.

Corollary 1.14 Let 1 <u < oo, 0 <a<a+f <n, and b € Ag(Qp) (0 < B < 1), for

all g1, g2 with 1 < ¢1 < n/(a+p) and 1/q2 = 1/(11 (a+B)/n.Ifa+pB—n/q <n <
n/q. Then M, is bounded from Kglu (Qp) to ngu Q).

On the other hand, for the case of A = 0 in the theorem 1.4, the boundedness for the
commutator of fractional maximal operator on grand p-adic variable Herz space is obtained and

it is even new.

Corollary 1.15 Let 1 Su < o0, 0 <a<a+<n, and b € Ag(Qp) (0 <3 < 1), for all
n(), (), q2() € €8 (Q1) with qi(-) € 2(Qp), (q1)+ < n/(a+B), and 1/ga(-) = 1/qu(-) —
(a+ B)/n. If n(-) is satisfying the following conditions

(1) a+ B —n/a() <n() <n/q(),

(2) a+ 8 —n/q (o) < 77(><n/Q1( )-

Then M, is bounded from Kn( (Q”) to K77 ’u (Q”)

For the case of n(-) be a constant exponent, this result is also even new in p-adic vector

space.

Corollary 1.16 Let 1 <u < oo, 0 <a <a+f <n, and b € Ag(Qp) (0 < B < 1), for
all q1(), @2(-) € €'°8(Qy) with q1(-) € 2(Q}), (@1)+ < n/(a+p), and 1/g2(-) = 1/q1(-) —
(a+ B)/n. If n is satisfying the following conditions

(1) a+ B —n/q() <n<n/d¢(),

(2) a+ B —n/q(c0) <n < n/q(0).

Then M? , is bounded from K77 ), 9(@") to K;’;))e(@ﬁ)-

For the case of a = 0, the followmg are obtained by theorem 1.4 and it is even new.

Corollary 1.17 Let 1 < u < o0, 0 < A < 00, and b € Ag(Q}) (0 < B < 1), for all
1), a1(-), g2(-) € €'°8(Qy) with ¢i(-) € 2(Qp), (q1)+ <n/B, and 1/go(-) = 1/q1 () — B/n. 1f
n(-) is satisfying the following conditions

(1) A+B8=n/a() <n() <n/q(),

(2) A+ B —=n/q (o) < 77()<n/q1( )-

Then Mp is bounded from MK77 (Q”) to MK;7 qz’(u))’e((@").



Theorem 1.5 Let 1 <u < o0, 0 < A< o0, 0<a<a+f<n, bEAg(QZ) (0 <
B < 1), and b > 0, for all n(-), q1(-), q2(-) € €5(Qp) with ¢1(-) € 2(Qp), (q1)+ <
n/(a+B), and 1/¢2(-) = 1/q1(-) — (o + B)/n. If n(-) is satisfying the following conditions

(D) A+a+B—n/a() <n() <n/d¢(),

(2) A+ a+ B —n/q(co )<77()<n/(h( )-

Then [b, ME] is bounded from MKq7 (Q”) to ]\4K17 ’(u ’G(QH)

On the one hand, when 7n(-), ¢i1(-), and ¢2(-) in theorem 1.5 are both constant exponent, this

results are still new.

Corollary 1.18 Let 1 <u < o0, 0 <A< o0, 0<a<a+pf<n, beAg(Qp) (0<8<
), and b > 0, for all ¢1, ¢ with 1 < ¢1 < n/(a+ ) and 1/q2—1/q1 (a+ﬁ)/n FA+a+

—n/q1 <n<n/q;. Then [b, M}] is bounded from MK;:; (Q") to MK\’ :;2 (Qp)-

For the case of A = 0 in the corollary 1.18, it reveals the boundedness for nonlinear commu-

tator of p-adic fractional maximal operator on grand Herz spaces.

Corollary 1.19 Let 1 <u < oo, 0 <a<a+f <n, be Ag(Qp) (0< B <1), andb > 0, for
all g1, g2 with 1 < 1 < n/(a+p8) and 1/q2 = 1/q1 — (a+p)/n. f a + 8 —n/q < n <
n/q;. Then [b, ME] is bounded from Kglu) 9(@”) to ngu (Qp)-

On the other hand, for the case of A = 0 in the theorem 1.5, the boundedness for the nonlinear
commutator of fractional maximal operator on grand p-adic variable Herz space is obtained and

it is even new.

Corollary 1.20 Let 1 <u < oo, 0 <a<a+f <n, be Ag(Qp) (0 < B <1), andb > 0, for
all n(-), 1(-), ga(-) € €'°8(Qy) with q1(-) € 2(Q}), (¢1)+ < n/(a+ f), and 1/ga(-) = 1/q(-) —
(a+ B)/n. If n(-) is satisfying the following conditions

(1) a+ B —n/qa() <n() <n/q(),

(2) a+ B —n/q(co )<77()<n/(h( )-

Then [b, M%) is bounded from K77 (Q”) to K77 (Q”)

For the case of 7(-) be a constant exponent, this result is also even new in p-adic vector

space.

Corollary 1.21 Let 1 <u < oo, 0 <a<a+f <n, beAg(Qp) (0<B<1), andb >0, for
all q1(), @2(-) € €'°8(Qy) with q1(-) € 2(Q}), (@1)+ < n/(a+p), and 1/g2(-) = 1/q1(-) —
(a + B)/n. If n is satisfying the following conditions

(1) a+ B —n/q() <n<n/d¢(),

(2) a+ B —n/q(co )<77<n/6h( )-

Then [b, ME] is bounded from Kn“ (Qp) to Kg;(l) 9(@")

9



For the case of a = 0, the following are obtained by theorem 1.5 and it is even new.

Corollary 1.22 Let 1 <u <00, 0 <\ < oo, be Ag(Qy) (0< B < 1), and b > 0, for all
1), ai(-), a2(-) € €'°8(Qy) with q1(-) € 2(Q}), (a1)+ <n/B, and 1/q2(-) = 1/a1 () — B/n. If
n(-) is satisfying the following conditions

(D) A+B8=n/a() <n() <n/¢ (),

(2) A+ 8 —n/q(0) <n(-) < n/q)(0).

Then [b, M?] is bounded from MKZ(éi’Zf))’G(Q ) to MK77 ’(u ’G(Qn)

In order to introduce the following theorem, we firstly need to introduce the p-adic version

of sharp maximal function Mg, for a locally integrable function f on Qp, then, in[3], define that

f T) = su 1 —
M) = sup i [ 1560 o

YEZ

where the supremum is taken over all p-adic balls B, (z) C Qp and fp_(;) = m fB7 (@) f(y)dy.
The commutator generated by Mg and b € L1,.(Q}) is given by

[b, ME)(f) () = b(a) M3 () () — ME(bf) ().

Theorem 1.6 Let 1 < u < o0, 0 < A < oo, b€ Ag(Qy) (0 < B < 1), and b > 0, for all
n(), @), q() € €'°5(Qp) with ¢1(-) € 2(Qp), (q1)+ <n/B, and 1/qa(-) = 1/qu(-) — B/n, If
n(-) is satisfying the following conditions

(1) A+ B=n/a() <n() <n/q(),

(2) A+ B =n/q(0) <n() <n/qy(co).

Then [b, Mj] is bounded from MK (@p) to MK (@p).

On the one hand, when 7n(-), ¢i(-), and g2(+) in theorem 1.6 are both constant exponent, this

results are still new.

Corollary 1.23 Let 1 < u <00, 0 < A < o0, b€ Ag(Qp) (0 < B < 1), and b > 0, for
all 1, qo with 1 < ¢1 < n/ﬁ and 1/q = 1/q1 B/n.If A+ B —n/q1 <n <n/q, Then [b, Mf]

is bounded from MK" ) (Q”) to MK;Z 32 (Qp)-

For the case of A = 0 in the corollary 1.23, it reveals the boundedness for nonlinear commu-

tator of p-adic sharp maximal function on grand Herz spaces.

Corollary 1.24 Let 1 <u < oo, b€ Ag(Qy) (0 < B < 1), and b >0, for all g1, g2 with 1 <
q < n/ﬁ and 1/qo = 1/q1 — B/n. If B —n/q1 < n < n/q;. Then [b,M,g] is bounded from
K (@p) to K (@p).

10



On the other hand, for the case of A = 0 in the theorem 1.5, the boundedness for the
commutator of sharp maximal function on grand p-adic variable Herz space is obtained and it

is even new.

Corollary 1.25 Let 1 <u <00, b€ Ag(Qp) (0 < B < 1), and b > 0, forall n(-), q1(-), ga(*) €
%”log((@g) with q1() € 2(Q}), (q1)+ < n/B, and 1/q2(-) = 1/qi(-) — B/n. If n(-) is satisfying
the following conditions

(1) B=n/q() <n() <n/g¢(),

(2) B—n/q(o0) <n(-) <n/qi(c0).

Then [b, Mf] is bounded from K 3™%(@z) to KI5 (@p).
For the case of n(-) be a constant exponent, this result is also even new in p-adic vector

space.

Corollary 1.26 Let 1 <u < oo, b€ Ag(Qy) (0 < B < 1), and b >0, for all ¢1(-), ga(-) €
%log((@;‘) with ¢1(-) € 2(Qp), (q1)+ <n/B, and 1/q2(-) = 1/q1(-) — B/n. If n is satisfying the
following conditions

(1) B =n/q(-) <n<n/d¢(),

(2) B =n/qi(oc) <n <n/q(c0).

Then [b, M) is bounded from K"’ (Qp) to K% (Qy).

Throughout this paper, the letter C' always takes place of a constant independent of the
primary parameters involved and whose value may differ from line to line. In addition, we give
some notations. Here and hereafter |E|;, will always denote the Haar measure of a measurable

set E' on Q) and by xg denotes the characteristic function of a measurable set £ C Q.

2 Preliminaries

2.1 p-adic function spaces

Assume that 1 < ¢ < 0o, we denote Lq(QZ) as the p-adic Lebesgue space, the space of all

functions f is in the locally L? space with finite norm

n
P

1 llze@p) = (/ ]f($)|qda?)%

In addition, for ¢ = oo and denote L>°(Q}) as the set of all measurable real-valued functions

J on Qy satistying

1f | oo (@n) = ess sup |f(z)] =nf{A > 0: [z € Qp: [f(z)] > Aln} < oo
z€Qp

11



Here, if the limit exists, the integral in above equation is defined as follows:

Idr = 1 Idz = 1 )|9d
[ @ tim [ = Y@

P BAV(O) —oo<k<y

In particular, since Q) = Sy, and d(tx) = [t]dz(t € Qp \ {0}), if f € LY(Qp), then

o= 3 [ s

@n Y=—00

'y—foo

and

1
f(tr)dr = —
Qp |t|p Qp

f(z)dx

We say that a measurable function ¢(-) is a variable exponent if ¢(-) : Q) — (0.00), the
following definition give some notations on the p-adic variable exponent Lebesgue space, which

are derived from [17].

Definition 2.1 Given a measurable function ¢(-) defined on Qj, we denote by

g :=essinfq(z), ¢4 :=esssupq(x).

IGQ $6Qg
(1) . = essinfueqy (2) = 257, ) = essinfueqy /() = =7
(2) Denote by &2(Q}) the set of all measurable function g(-) : Q) — (1, 00) such that

1<q <q(r)<qy <00, x€Qy.

Definition 2.2 (p-adic variable exponent Lebesgue spaces) Let ¢(-) € Z(Q}). Define

the p-adic variable exponent Lebesgue spaces rat (Q") as follows
L‘I(')(QZ) = {f is measurable function : . %, (f/n) < oo for some constant n > 0},

where

)= [ 1IN

The Lebesgue space L1 (Q") is a Banach function space with respect to the Luxemburg norm

q()
100 ) = (> 0 Fo(1/m) = [ ('f 57"“’”) de < 1).

Next, Cortés and Rafeiro [8] introduced the following class of exponents.

12



Definition 2.3 (log —Hélder continuity) Let measurable function ¢(-) € 2(Q}).
(1) Denote by ‘Ea”éog(@;}) the set of all ¢(-) which satisfies

Y(g-(By(2)) — ¢+ (B4(2))) < C,

for all v € Z and any = € Q}, where C denotes a universal constant.
(2) The set s (Qp) consists of all g(-) which satisfies

C
log,(p + min{|z|p, |y[,})’

lg(z) —q(y)| <

for any z,y € Q}, where C' denotes a universal constant.
(3) (see [17]) Denote by €'°8(Qp) = ‘Kéog((@g) N ‘Kégg((@g) the set of all global log —Hdélder

continuous functions ¢(-).

Finally, we will introduce p-adic Herz-Morrey spaces with variable exponent and grand p-adic

Herz-Morrey spaces with variable exponent [5, 15].

Definition 2.4 Assume 7(-) € L>(Q}), 1 <u < oo, s(-) € 2(Q}), § >0and 0 < A <
oo. A homogeneous p-adic Herz-Morrey spaces with variable exponent M Kg ;‘( (Qg) can be
defined by

MKW( ; (Qn) ={gc LIOC (Qy\{0}) : HQHMK;’ ey (@) < oo},

where the norm
ko

91 rscr3 gy = 500 27N 32 P gl 3

ko€Z k=—o00

Definition 2.5 Assume 7(-) € L*(Q}), 1 < u < oo, s(-) € Z(Q}), 6 >0 and 0< A<
oo. A homogeneous grand p-adic Herz-Morrey spaces with variable exponent M K u) H(Q”)
can be defined by

MK” 0 (@) = {g e L@\ {0}) : HQHMKz(-)(f;o,e(Q;) < oo},

where the norm

ko

w(l4€)y ot
903100y = ST ME D PO g [P ens
&0 h=—o0

Assume A = 0, the grand Herz-Morrey spaces MK 7’( (Q”) K, ( ) ), 9(@”) then the
grand p-adic variable Herz space is displayed as follows, the deﬁmtlon in the context of Euclidean

space can be found in [9].
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Definition 2.6 Assume 7(-) € L*(Qy), 1 < u < oo, s() € 2(Qp), 8 > 0. The homoge-
neous grand p-adic Herz space with variable exponent K 0 “) 9(@") can be defined by

U(')au)ﬁ n\ __ s(- 7y .
Ks() (Qp) - {g €L ()(Qp) : ”g”K:((f))’")’e(Qg) < 00}7
where the norm

u(l+e)

1
(Vku(1l+e) g HL9 o Juliee

HgHK”? ),u), Q(Qn) - Sup{€ Z p

ko €L
e>0 k=—o0

The following result introduce the basic definition of p-adic Lipschitz spaces [5].

Definition 2.7 Assume 0<g<1. then the p-adic version of homogeneous Lipschitz spaces
Ap(Qp) is defined by

AS(QD) = {f € Lho(@D) [ fllasap < o),

where @)~ £)
x)—J\y

Il fllas@@ry = sup :
#(@) z,yeQp, z#y |$—y|g

2.2 Auxiliary propositions and lemmas

In this part we state some auxiliary propositions and lemmas which will be needed for proving
our main theorems. And we only describe partial results we need.

Firstly, the p-adic version of Hélder’s inequality can be obtained in [8].

Lemma 2.1 (Generalized Holder’s inequality on Qg) Let Q, be an n-dimensional p-
adic vector space. Suppose that q1(-), g2(-),7(-) € £(Q}) and r(-) satisfy Tl) = q%(~)+q271(~) almost
everywhere. Then there exists a positive constant C' such that for all f € L‘H(')(Qg) and g €
LQQ(')(@;’), the inequality

HngLT(')(Qg) < CHf”qu(‘)(Qg)HgHqu(')(Qg)v
holds.

In order to prove main theorem, the following norms of characteristic functions estimates are
derived from [10], besides, the second part can be obtained by the following part (1) and plays

a crucial role.

Lemma 2.2 (Norms of characteristic functions) If ¢(-) € ¢'°$(Q}). Then
_an_
HXBW(r)Hth)(Qg) < Cpat
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where

q(x), if v<0,
q(x,7) = .
q(o0), if v >0.

As we all known, the following Lemma give the boundedness of fractional integral operator

on p-adic variable exponent Lebesgue space, for exact details, we can see [10].

Lemma 2.3 Assume 0 < o < n, for all r(-), ¢(-) € €'°5(Qp) with r(-) € 2(Q}), ry <
% and 1/q(-) = 1/r(-) — a/n, then
17 L"O@p) — L1O@p).

«

The following result is introduced in [12], it reveals that the fractional maximal operator can

be controlled by the fractional integral operator.
Lemma 2.4 Let 0 < a <n, for all z € Q}, there exists a positive constant C, such that
|ME(f) ()] < CIIE(f)(=)].
The authors in [16] obtained the following Lemmas 2.5, 2.6.

Lemma 2.5 Let 0 <8 <1, 0 <a<a+pf<n Ifbe Ag(Q}), then for any z € Qp, we

have

Mﬁ,b < C||bHAﬁ(@g)M£+5(f)(x).

Lemma 2.6 Let 0 < o < n. If b € Ag(Qp) and b > 0, then for any x € Q) such that
ME(f)(x) < oo, we obtain

|[b, ME() ()] < Mg, (f)(x).

Finally, the following result is obtained by the definition 2.5, we also see the proof of theorem
3.4 in [15].

Lemma 2.7 Assume n(-) € L>(Q}), 1 < u < o0, ¢(-) € £(Qp), 0 > 0and 0 < X <
oco. If f e MKZZ)(’.;L)’Q(Q;‘), then, for all [ € Z, there exists a constant C' > 0, such that

1))
1 xall Lo ) < Cp £l ns a0 oy

By virtue of Lemma 2.2, we can deduce the following conclusion, which will simplify the

proof of the main theorem.
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Lemma 2.8 Let 0 < a < n, for all ¢1(-), ¢2(-) € €"°8(QY), with ¢1(-) € 2(Q}), (q1)+ <
n/a, and 1/qa2(-) = 1/q1(-) — a/n, taking k,l € Z, then

<l7f)>n—koz
! Cpal ', ifk<0,1<0,
WHX!CHLQQ(')(Q?)”XlHLqi(.)(Qn) < gm g
o T Cpn O i k>0, 1<0,
and
kn___In g .
1 Cpa() a2() , if k<0, 1>0,

m”)(k”mzw(@g)HXlHLq;«)(Qg) < —lo

kn in
Cpa(e9) ~ a2() ifk>0,1>0.

Proof: We divide the proof into four cases according to the range of k, [.
Case 1: If k, | <0, for any fixed p-adic ball sphere Sy, S; C Qp, using Lemma 2.2 and the
fact 1/g2(-) = 1/q1(-) — a/n, we obtain

! ety 0 O ke
|B( )’ HX]CHL‘IZ( Q”)HXlHqu()(Qn) —Cp prtp :Cp 1

Case 2: If k <0, [ > 0, similarly, using Lemma 2.2 and the fact 1/g2(-) = 1/q1(-) — a/n, we

claim that

—la

1 L kn in kn___in__
|B( )| ||XkHLq2() Q” ”XlHqu Q”) < Cp lnqu(-)pql(OO) < Cpcn(-) q2(o0)

Case 3: If k > 0, | <0, for any fixed p-adic ball Bi(z) C Qp, using Lemma 2.2 and the
fact 1/q2(-) = 1/q1(-) — a/n, we obtain

1 in —kn + ln
|B ( )| HXkHqu )(Qn HXlHqu() Qn) < Cp pqz(oo)pql( —Cpql(oo) ()

Case 4: If k > 0, | > 0, for any fixed p-adic ball Bj(z) C Qp, using Lemma 2.2 and the
fact 1/g2(-) = 1/q1(-) — a/n, we obtain

in

<Cp~ lnqu(oo>pq1 ) < Cpql(oo) )

—la

1
|B ( )| ||Xk||Lq2() (@) ”XlHqu() @) =

Combining the cases 1, 2, 3, and 4, which implies the proof of Lemma 2.8.

3 Proofs of the principal results

Proof of Theorem 1.1 If f € MKH( (Q”) we can write f(z1) =Y o f(z1)xi(z1). Sup-

pose that ko is positive, since it s szmzlar for kg <0, using Minkowski’s inequality, we obtain

u(l4e)
—koA Ok (1+e€)
115 fHMKn()u)G(Qn) = supp ( Z p ORFI TP £y Hm(f )

ko€Z
e>0 k=—00
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u(1+e)
_ (1+e€)
< sup p~FoA < Z Rt ( > XkHLqQ(an >>

ko €Z
>0 k=—o0 l=—0c0

u(1+e€) u(l+e)

ko k—2
< Csupp*k())‘ €’ Z p"(')ku(He) ( Z 115 (fx1) Xk‘HLfIQ() @p)

ko€Z _ _
>0 k=—o0 l=—o0

u(1l+4e€) u(1+e)

ko€Z
€50 k=—00 l=k—1

u(1+6 u(1+5)

k+1
+ Csupp ™ | € Z p Jhullte) (Z I8 (Fx) Xall o >(Qn>

o.9]
+ Csupp For | ¢ Z p hull+e) ( Z & xa XkHqu()(Qn

ko€Z
e>0

=: Fy + Ey + Es.

k=—o00 l=k+2

In response to Es. On the one hand, if k > 0, | > 0, since n(-) € %log((@g), by using definition
2.8, for z1 € Sg, we have

n(z1) =n(0)| € t—F——5 <

c _c
log,(p+p*) = k

which implies pP1(#1) = phn(o0) thus, the situation of n(co) can be replaced by n(z1).
On the other hand, if k < 0, 1 < 0, since n(-) € ‘Klog(@g), by using definition 2.3, for
z1 € S, we have
C C

log,p* K’

[n(z1) = n(0)] <

which implies p*1Z1) ~ pknO) | thus, the situation of n(0) can be replaced by n(z1).

Then by using Lemma 2.3, we obtain

k+1 (1+e)\ ulite
= Csupp o Z pt k(i) (Z T2 X0 Las @n>

ko€Z
€50 k=—o0 I=k—1

ko k1 (1+6) u(l4e€)
< Csupp—ko)\ 649 Z pn(')ku(l—f—e) < Z ||le”qu(A)(Qg)>

B h=—o0 =k
eEwy
< Csup p~Fo ( Z pTOFE | £x Hz(qllff)Qn )
RN h=—o0

CHf”MKn<>u) @)’
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For any k € Z, | <k —2 and a.e. z1 € Sk, 22 € S}, then |z1 — 22|, = p*, by Lemma 2.1, we

obtain

2(fxa) ()] < / @I

s 121 = zafp ™"

<cpe) [ |feldz
S
< Cpk(o‘_")||leHLq1<~>(@g)||Xl||Lq/1<»>(Qg)- (3.1)

According to Minkowski’s inequality, we obtain

(1+6) u(l+e)
Ey < Csuppor Z pTOkuli+e < > )Xk L gy )

ko€Z

e>0 k=—o0 =
ko 2 u(l—‘rE) u(l4e€)
+ C'sup pFor [ € an(-)ku(ue) ( Z 128 (f X)Xk ”Lq2<»>(@g)>
0 = moe
=: F11 + F1s.

Then using Lemma 2.8 and (3.1)

_1 (1+E) u(1l4e)
By = Csupp—k())\ ? Z Pl n(-)ku(l+e) ( Z 112 £ (i Xk:Hqu() @) )

koE€Z

e>0 l=—00

k=—o0

k—2
ngupp_kO’\< Z pn( Jeu(1te) <Z ”XkHqu()(@n) ka=n)

ko €Z
>0 k=—00 l=—00

u(l+e) 714(%4’5)
||le\|Lq1(->(@;)HX1||Lq'1<‘>(Qg)> :

For k,1 < 0, we directly consider q(-) and the fact « —n/qi(-) < n(-) < n/qi(-). Let w =

% - 77()7 then

~1 k—2 (I+6)\ w(+e
By < Csupp ™t [ Y- ( > pl”(')IIszHLq1<~>(Qg)p“”_k)> :

koE€Z

e>0 l=—o0

k=—o00

Now by using Fubini’s theorem, Lemma 2.1 and the estimate p 41+ < p= we have

1
1+e) w(l=k)u(lte)
Ei <Csupp™ ko)\ 9 Z Z plﬁ( u(1l+e€) HfX Hzil(;(@n)p 2 )

ko€Z

€50 k=—00 l=—00
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k-2

_ )/ u(l+e)
x ( Z p%)wumv]fﬁe)
l=—00
_ (—k)u(ite) 1
_ 1+ w — u €
= Csupp "M - Z PO | £y Hqu(f e ReD
keo>€§ k=—o0l=—00

k )\ I 1+ w(l—k)u
< CsuppHo Z POl g Z p™ ]

ko €Z
€50 l=—c0 k=142

— 1 1
< Csupp "Ae Z p"O 0 HLJ; SR

koEZ
€O>EO l=—o0
—k)\ 1 1+e) L
< Csupp ™ §jp PRI il gy
kg€Z = oo
e>0

=C : .

Next, we need to estimate E1o, by applying Minkowski’s inequality

ko (I+e)\ uite)
Eiy < Csupp ot [ # )~ pr0kuli+e) ( > IRkl o ) )

ko€Z k=0

e>0 l=—00

ko k—2 u(l+€)\ ulfe
+Csupp For [ " prl)kuliee ( 12 (fxa Xk“[ﬂz()(@n))
e k=0 1=0
=: N1 + Ns.

Noting that the estimate Na is similar with the case of Ev1, namely, by substituting ¢y (-) for
¢1(00) and using the condition n(-) < n/q)(c0).
As for Ny, since n(-) < ( L by using Lemma 2.8 and (3.1), we get

ko -1 u(l+e) u(llfe)
Ny < Csupp™o [ ptOF e (N2 ()X oo @)
ko€Z k=0 l=—o0 :
e>0
ko -1 . u(1+e) 4u(11+e>
<C sup p—ko)\ 69 an(-)ku(l—l-e Z pq1<°°)pq1 HleHqu( ) @)
ko€ k=0 l=—o0
e>0
ko u(l+e)\ wita
. (n() ,( ))ku (1+e¢) ( )
< C'supp~o? 69217 Z pql 1 xtll par ) (@)
’“0>EOZ k=0 l=—o00
€
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1 n (1+6) u(l+e)
< CsuppikO)\ 69 ( Z pq/l(') Hle’Ltn(-)(Q;))

ko€EZ

e>0 l=—o00

—1 in . () (1+€) u(l+e)
_ ey il .
< Csupp koA | 0 ( Z ph0 Hf(Xl)HLm-)(Qg)pm( )> .

koE€Z

e>0 I=—00

Combining the condition n(-) < (],L“ and Lemma 2,1, which implies that
1

1 i) (1+e)\ u(i+e)
_ Tyt .
Ny < Csupp Rod [ ¢f ( Z pq1(> Hle‘Lu(-)(Q;)Pln())

ko€Z
60>60 [==oc
1 ) u(l4e€)
— ko) (1+ +e
< Csupp™ ™ E p n()(u(lte)) HfX ”L‘H() @)
o\
€

1
“(177%), u(I+e)

—1 In , (u(1l+€))
l

=—0

ko u(1l+e)
_ (1
< C sup p~FoA <e9 > O £y IILqIf)Qn)>

ko€Z
e>0

< ClIfl

l=—00
MK @p)

In order to estimate Es, let k € Z and | > k+2, for a.e.z1 € Si, 22 € S, then |21 — 22|p ~ph It
follows from Lemma 2.1 that

|f(22)]

2(fFxa) (21)] < / iz

S |Z1 - ZQ‘P

< cpttom) /S (22l
l

< O il o gyt g (32)

Splitting Es by using Minkowski’s inequality we obtain

u(l4e€)\ u(l+e)
Ez=Csupp ot | Z plOkettd ( > B Xkl e @n>

ko€EZ I=k+2

e>0 k=—o00

(1+6) (1+e€)
< Csup p oA [ ¢ Z n()ku(lte) (Z 115 (fx) Xkl paz ) Qn)

ko€Z I=k42

e>0 k=—o00
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ko o) (1+€) u(1l+4e€)
+Csupp " | € an(‘)ku(lﬁ) ( Z ’Ig(le)Xk”qu(->(Qg)>

ko€Z —
€50 l=k+2

=: E31 + E32.

For Es3o, taking d = +n(-) >0, by Lemma 2.8, (3.2), we have

( )

ko€Z

1
E3o=Csupp~ ko)‘ Zp" k“(1+5 Z |112( le)Xk”ng()(Qn))u(1+e)]“<1+€)
k=0

RS I=k+2
ko [e’e)
< O sup p~HoA[e? Zpﬂ(~)ku(1+e)( Z ||Xk||Lq2(~)(@$)pl(a_n)
s k=0 I=k+2

1
Il fxi ”Lq1<‘>(Qg) Ilx1 Hqul(‘)(Qg))U(lJre)] EE)

ko 00
< Coupp A S S PHIO fall o gy )] T,
oSy k=0 I=k+2

Similarly, we still make use of Lemma 2.1, definition 2.5 and Lemma 2.7 to obtain

ko 00
u(1+¢€) d(k—Du(l+e)
Es < Csupp~ ko/\ Z Z pl(a+77() u(l+e) ||fX Hqu( )E(Qn)p 2 )

k, Z
50>€0 k=0 1=k+2
u € u(1+e)
E P (=hdClra) D ) ©+ay ]u<1+e)
z k+2
k ,\ (1 (14¢) d(k Du(i+e)
< C'supp o E E P £y Hm(f |
ko EZ
2% k=0 I=k+2
ko
k A dku(14e)/2 u(14€)l(A d/2
< Csupp Ho E p u(l+e)/ E Y (A+e)l(A+a— /)] (1+s)HfH Kn()u)@((@n)
k, Z
€0>€0 k=0 I=k+2
<C|fl

]
The last step is obtained by the fact A + o < d/2.

Now for E31, again using Minkowski’s inequality we obtain

(1+E) u(l4e€)
Es3 < CSUpp_kOA 0 Z pT] hku(lte) < Z HIp le XkHLQQ() Qo >

’ZOjOZ k=—o0 I=k+2
1
u(l-i—e) u(l4e€)
o keu(1
+ Csupp "™ E pt ki) E & (P x0xkN Laa )
ko€Z k=—
e>0 o0
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= Wy + Wh.

Noting that the estimate Wy is similar with the case of Esa, namely, by substituting qi(-) for
q1(00) and using the condition () +n(-) > 0, thus we omit the details.

In order to estimate Wa, by virtue to the fact X+ a —n/qi(-) < n(-) < n/qi(-), definition
2.5, Lemmas 2.7, 2.8, we have

ko€Z —0

e>0 k=—o0

0 (1+e)\ u(+eo)
W = C'sup p~ o Z pkuli+e) <Z L& x0) Xk oz Qn)>

-1 [e9)
< Csuppo> (ee S Ok (Zpla el gy k0 g

ko€Z _
>0 k=—o00 =0

u(l+e)\ wiFo
HleHqu(-)(Qg)>

—1 u(l—i—s) u(l4e€)
<C Supp—k())\ 49 Z p n(-)ku(1+e¢) (qul( )pqz oo) HleHqu( )(Q")>

ko€Z =0

e>0 k=—00

o . u(l4+€)\ u(ite)
_ 1+ —tn
=Csupp koA 0 Z p q1 (1+€) (quz(OO) HleHqu(')(Qg)>

koE€Z

e>0 k=00 =0
o z u(l4+e)\ u(ite
— ko 0 ——in
< Csupp o € quz(oo)”leHqu(.)(Qn)
kog€EZ 1=0 P
>0

00 (1+¢) (i+e
_ , H—p()— —n__
< Csupp ot | € (ZPZ"()||leHLq1(~>(Q$)p( "o q2<°°))>

ko€Z

e>0 =0
00 (1+6) u(1l4e€)
- loa—n(-)— +A)
< Csupp Fo* [ ¢ p =) ()00, [
ko€Z lz—; HfHMK;]’ql(A) G(Qp)
>0 -
<C|f

n(-),u),0 (yny
MKA7q1(.) (Qp)

The last step is obtained by the fact A + o —n/q1(c0) < n(-).

In summary, combining the estimates of E1, Eo, E3, we can obtain
P u <C )
|| afHMK;\I() )9(Qn) = ||f|| KW( (Qn)

which implies the proof of theorem 1.1.
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Proof of Theorem 1.2 For all z € Q, by using Lemma 2.4, we obtain
|ME(f) (@) < CIE(f])(2)]-
Thus by using theorem 1.1, we can obtain the proof of theorem 1.2, thus we omit the details.

Proof of Theorem 1.3 Ifb € Ag(Qy), then by using (1.1), the following elementary estimate

|[b, Ig]f(l’)’ < / |(b($) — b(y))f(y)‘dy

n lz—ylp™®
/)l
< Clblla Q"/ — a5y
5(Qp) @ |z — oIt B

< ClIbllagp Hassf (@),

holds under the assumptions of theorem 1.3, by using theorem 1.1, we directly obtain the result

of theorem 1.3, thus we omit the details.
Proof of Theorem 1.4 For any fized x € Qy, if b € Ag(Qy), then by Lemma 2.5, we have

M2, < Clbllas0p M2 () ().

Thus by using theorem 1.2, we can obtain the proof of theorem 1.4, thus we omit the details.

Proof of Theorem 1.5 For any fived x € Qy, ifb € Ag(Q}) and b > 0, then by Lemma 2.6, we

have

|[b, ME](f)(x)| < Mg, (f)()-

Thus by using theorem 1.4, we can obtain the proof of theorem 1.5, thus we omit the details.

Proof of Theorem 1.6 For any p-adic ball By(z) C Qp, by applying triangle inequality, we
obtain

R ] _
11 M) = Vsp o [ 15@) = Sl

YEZ

1
S T o M0~ (7).l

YEZL
1
<sup i I =B+ @, ~ 7)ol
1
< sup i [, I = By

|b(z)| 1 N F(2)ds
+ig§‘!Bv($)\h /B7 fz)dz |By()]n /Bﬁ,(x) o=l (=)=
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< QM‘ZI;‘ (x).
By using Mg(f) <2MP(f), if z € Qp, then

b, M () (@)] < 207 (@) ME() (@) + MG 1)(@)) + 1B, ME(F) (@)
< A((b™ (@) MP(f) () + MP (b~ f) () + 20 £ (2).

In view of b> 0 and b € AB(QZ), we only make use of the result of Corollary 1.17, it is easy to
obtain the proof of theorem 1.6.
Funding information

This work was partly supported by the Fundamental Research Funds for Education Department
of Heilongjiang Province (No. 1453ZD031, 2019-KYYWF-0909, SJGY20220609) the Reform
and Development Foundation for Local Colleges and Universities of the Central Government
(No. 2020YQO07), and the MNU (No. KCSZKC-2022026, KCSZAL-2022013).

Conflict of interest

The authors state that there is no conflict of interest.

Date availability statement

All data generated or analysed during this study are included in this published article.

Author contributions

All authors contributed equally to the writing of this article. All authors read the final manuscrip-
t and approved its submission.

References

[1] K Andrei. Non-Archimedean analysis: quantum paradoxes, dynamical systems and biolog-
ical models. Mathematics and its Applications, 427, 1997.

[2] S Albeverio, R Cianci, and AY Khrennikov. p-adic valued quantization. P-Adic Numbers,
Ultrametric Analysis, and Applications, 1:91-104, 2009.

24



[3]

[4]

[11]

[12]

[14]

YC Kim. Carleson measures and the BMO space on the p-adic vector space. Mathematische
Nachrichten, 282(9):1278-1304, 2009.

SV Kozyrev. Methods and applications of ultrametric and p-adic analysis: from wavelet
theory to biophysics. Proceedings of the Steklov Institute of Mathematics, 274(Suppl 1):1-84,
2011.

NM Chuong and DV Duong. Weighted Hardy-Littlewood operators and commutators on
p-adic functional spaces. P-Adic Numbers, Ultrametric Analysis, and Applications, 5:65-82,
2013.

AY Khrennikov, K Oleschko, and M de Jesus Correa Lépez. Applications of p-adic numbers:
from physics to geology. Contemp. Math., 665:121-131, 2016.

K Oleschko and AY Khrennikov. Applications of p-adics to geophysics: Linear and quasi-
linear diffusion of water-in-oil and oil-in-water emulsions. Theoretical and mathematical

physics, 190(1):154-163, 2017.

LF Chacén-Cortés and H Rafeiro. Variable exponent Lebesgue spaces and Hardy-Littlewood
maximal function on p-adic numbers. P-Adic Numbers, Ultrametric Analysis and Applica-
tions, 12:90-111, 2020.

H Nafis, H Rafeiro, and MA Zaighum. A note on the boundedness of sublinear operators
on grand variable Herz spaces. Journal of Inequalities and Applications, 2020:1-13, 2020.

LF Chacon-Cortés and H Rafeiro. Fractional Operators in p-adic Variable Exponent
Lebesgue Spaces and Application to p-adic Derivative. Journal of Function Spaces, 2021:1—
9, 2021.

B Dragovich, AY Khrennikov, Sergei V Kozyrev, and N Migié. p-adic mathematics and
theoretical biology. Biosystems, 199:104288, 2021.

QJ He, X Li, et al. Characterization of Lipschitz Spaces via Commutators of Maximal
Function on the-Adic Vector Space. Journal of Mathematics, 2022, 2022.

N Sarfraz, M Aslam, M Zaman, and F Jarad. Estimates for p-adic fractional integral
operator and its commutators on p-adic Morrey—Herz spaces. Journal of Inequalities and
Applications, 2022(1):1-17, 2022.

B Sultan, F Azmi, M Sultan, M Mehmood, and N Mlaiki. Boundedness of Riesz Potential
Operator on Grand Herz-Morrey Spaces. Axioms, 11(11):583, 2022.

25



[15]

B Sultan, M Sultan, A Khan, and T Abdeljawad. Boundedness of an intrinsic square
function on grand p-adic Herz-Morrey spaces. AIMS Mathematics, 8(11):26484-26497,
2023.

JL Wu and YP Chang. Characterization of Lipschitz Spaces via Commutators of Fraction-
al Maximal Function on the p-Adic Variable Exponent Lebesgue Spaces. Comptes Ren-
dus. Mathématique (in press), 2023.

JL Wu and YP Chang. Some estimates for commutators of sharp maximal function on the
p-adic Lebesgue spaces. Open Mathematics, 21(1):20230168, 2023.

MH Taibleson. Fourier Analysis on Local Fields, volume 15. Princeton University Press,
Princeton, 1975.

VS Vladimirov, IV Volovich, and EI Zelenov. p-adic Analysis and Mathematical Physics.
World Scientific, Singapore, 1994.

26



	Introduction and main resulats
	Preliminaries
	p-adic function spaces
	Auxiliary propositions and lemmas 

	Proofs of the principal results

