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Abstract

In this paper, we present the characterizations of total boundedness, rel-
ative compactness and compactness in fuzzy set spaces equipped with the
endograph metric. The conclusions in this paper significantly improve the
corresponding conclusions given in our previous paper [H. Huang, Charac-
terizations of endograph metric and Γ-convergence on fuzzy sets, Fuzzy Sets
and Systems 350 (2018), 55-84]. The results in this paper are applicable to
fuzzy sets in a general metric space. The results in our previous paper are
applicable to fuzzy sets in the m-dimensional Euclidean space Rm, which
is a special type of metric space. Furthermore, based on the above results,
we give the characterizations of relative compactness, total boundedness and
compactness in a kind of common subspaces of general fuzzy sets according to
the endograph metric. As an application, we investigate some relationship
between the endograph metric and the Γ-convergence on fuzzy sets. This
paper is also submitted to arXiv.

Keywords: Compactness; Endograph metric; Γ-convergence; Hausdorff
metric

1. Introduction

Fuzzy set is a fundamental tool to investigate fuzzy phenomenon [1–7]. A
fuzzy set can be identified with its endograph. The endograph metric Hend
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on fuzzy sets is the Hausdorff metric defined on their endographs. It’s shown
that the endograph metric on fuzzy sets has significant advantages [8–11].

Compactness is one of the central concepts in topology and analysis and
is useful in applications (see [6, 12]). The characterizations of compactness
in various fuzzy set spaces endowed with different topologies have attracted
much attention [13–19].

In [18], we have given the characterizations of total boundedness, rel-
ative compactness and compactness of fuzzy set spaces equipped with the
endograph metric Hend.

The results in [18] are applicable to fuzzy sets in the m-dimensional Eu-
clidean space Rm. Rm is a special type of metric space. In theoretical research
and practical applications, fuzzy sets in a general metric space are often used
[1, 2, 14, 15].

In this paper, we present the characterizations of total boundedness, rela-
tive compactness and compactness of the space fuzzy sets in a general metric
space equipped with the endograph metric Hend. We point out that the
characterizations of total boundedness, relative compactness and compact-
ness given in [18] are corollaries of the corresponding characterizations given
in this paper.

Furthermore, we discuss the properties of the endograph metric Hend,
and then use these properties and the above characterizations for general
fuzzy sets to give the characterizations of relative compactness, total bound-
edness and compactness in a kind of common subspaces of general fuzzy sets
according to the endograph metric Hend.

As an application of the characterizations of compactness given in this
paper, we discuss the relationship between Hend metric and Γ-convergence
on fuzzy sets.

The remainder of this paper is organized as follows. In Section 2, we
recall and give some basic notions and fundamental results related to fuzzy
sets and the endograph metric and the Γ-convergence on them. In Section
3, we give representation theorems for various kinds of fuzzy sets which are
useful in this paper. In Section 4, we give the characterizations of relatively
compact sets, totally bounded sets, and compact sets in space of fuzzy sets
in a general metric space equipped with the endograph metric, respectively.
In Section 5, based on the characterizations of compactness given in Section
4, we give the characterizations of relatively compact sets, totally bounded
sets, and compact sets in a kind of common subspaces of the fuzzy set space
discussed in Section 4. In Section 6, as an application of the characterizations
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of compactness given in Section 4, we investigate the relationship between
the endograph metric and the Γ-convergence on fuzzy sets. At last, we draw
conclusions in Section 7.

2. Fuzzy sets and endograph metric and Γ-convergence on them

In this section, we recall and give some basic notions and fundamental
results related to fuzzy sets and the endograph metric and the Γ-convergence
on them. Readers can refer to [1–3, 20, 21] for related contents.

Let N denote the set of natural numbers. Let R denote the set of real
numbers. Let Rm, m > 1, denote the set {〈x1, . . . , xm〉 : xi ∈ R, i =
1, . . . ,m}. In the sequel, R is also written as R1.

Throughout this paper, we suppose that X is a nonempty set and d is
the metric on X. For simplicity, we also use X to denote the metric space
(X, d).

The metric d on X × [0, 1] is defined as follows: for (x, α), (y, β) ∈ X ×
[0, 1],

d((x, α), (y, β)) = d(x, y) + |α− β|.
Throughout this paper, we suppose that the metric on X× [0, 1] is d. For

simplicity, we also use X × [0, 1] to denote the metric space (X × [0, 1], d).
Let m ∈ N. For simplicity, Rm is also used to denote the m-dimensional

Euclidean space; dm is used to denote the Euclidean metric on Rm; Rm×[0, 1]
is also used to denote the metric space (Rm × [0, 1], dm).

A fuzzy set u in X can be seen as a function u : X → [0, 1]. A subset S
of X can be seen as a fuzzy set in X. If there is no confusion, the fuzzy set
corresponding to S is often denoted by χS; that is,

χS(x) =

{
1, x ∈ S,
0, x ∈ X \ S.

For simplicity, for x ∈ X, we will use x̂ to denote the fuzzy set χ{x} in X.
In this paper, if we want to emphasize a specific metric space X, we will
write the fuzzy set corresponding to S in X as SF (X), and the fuzzy set
corresponding to {x} in X as x̂F (X).

The symbol F (X) is used to denote the set of all fuzzy sets in X. For
u ∈ F (X) and α ∈ [0, 1], let {u > α} denote the set {x ∈ X : u(x) > α},
and let [u]α denote the α-cut of u, i.e.

[u]α =

{
{x ∈ X : u(x) ≥ α}, α ∈ (0, 1],

suppu = {u > 0}, α = 0,
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where S denotes the topological closure of S in (X, d).
The symbol K(X) and C(X) are used to denote the set of all nonempty

compact subsets of X and the set of all nonempty closed subsets of X, re-
spectively. P (X) is used to denote the power set of X, which is the set of all
subsets of X.

Let FUSC(X) denote the set of all upper semi-continuous fuzzy sets u :
X → [0, 1], i.e.,

FUSC(X) := {u ∈ F (X) : [u]α ∈ C(X) ∪ {∅} for all α ∈ [0, 1]}.

Define

FUSCB(X) := {u ∈ FUSC(X) : [u]0 ∈ K(X) ∪ {∅}},
FUSCG(X) := {u ∈ FUSC(X) : [u]α ∈ K(X) ∪ {∅} for all α ∈ (0, 1]}.

Clearly,
FUSCB(X) ⊆ FUSCG(X) ⊆ FUSC(X).

Define

FCON(X) := {u ∈ F (X) : for all α ∈ (0, 1], [u]α is connected in X},
FUSCCON(X) := FUSC(X) ∩ FCON(X),

FUSCGCON(X) := FUSCG(X) ∩ FCON(X).

Let u ∈ FCON(X). Then [u]0 = ∪α>0[u]α is connected in X. The proof is
as follows.

If u = χ∅, then [u]0 = ∅ is connected in X. If u 6= χ∅, then there is an
α ∈ (0, 1] such that [u]α 6= ∅. Note that [u]β ⊇ [u]α when β ∈ [0, α]. Hence

∪0<β<α[u]β is connected, and thus [u]0 = ∪0<β<α[u]β is connected.
So

FCON(X) = {u ∈ F (X) : for all α ∈ [0, 1], [u]α is connected in X}.

Let F 1
USC(X) denote the set of all normal and upper semi-continuous

fuzzy sets u : X → [0, 1], i.e.,

F 1
USC(X) := {u ∈ F (X) : [u]α ∈ C(X) for all α ∈ [0, 1]}.

We introduce some subclasses of F 1
USC(X), which will be discussed in this

paper. Define

F 1
USCB(X) := F 1

USC(X) ∩ FUSCB(X),

4

ch
in

aX
iv

:2
02

30
1.

00
11

3v
1



F 1
USCG(X) := F 1

USC(X) ∩ FUSCG(X),

F 1
USCCON(X) := F 1

USC(X) ∩ FCON(X),

F 1
USCGCON(X) := F 1

USCG(X) ∩ FCON(X).

Clearly,

F 1
USCB(X) ⊆ F 1

USCG(X) ⊆ F 1
USC(X),

F 1
USCGCON(X) ⊆ F 1

USCCON(X).

Let (X, d) be a metric space. We use H to denote the Hausdorff dis-
tance on C(X) induced by d, i.e.,

H(U,V ) = max{H∗(U, V ), H∗(V, U)} (1)

for arbitrary U, V ∈ C(X), where

H∗(U, V ) = sup
u∈U

d (u, V ) = sup
u∈U

inf
v∈V

d (u, v).

If there is no confusion, we also use H to denote the Hausdorff distance
on C(X × [0, 1]) induced by d.

The Hausdorff distance on C(X) can be extended to C(X)∪{∅} as follows:

H(M1,M2) =


H(M1,M2), if M1,M2 ∈ C(X),
+∞, if M1 = ∅ and M2 ∈ C(X),
0, if M1 = M2 = ∅.

Remark 2.1. ρ is said to be a metric on Y if ρ is a function from Y × Y
into R satisfying positivity, symmetry and triangle inequality. At this time,
(Y, ρ) is said to be a metric space.

ρ is said to be an extended metric on Y if ρ is a function from Y ×Y into
R ∪ {+∞} satisfying positivity, symmetry and triangle inequality. At this
time, (Y, ρ) is said to be an extended metric space.

We can see that for arbitrary metric space (X, d), the Hausdorff distance
H on K(X) induced by d is a metric. So the Hausdorff distance H on
K(X × [0, 1]) induced by d on X × [0, 1] is a metric.

The Hausdorff distance H on C(X) induced by d on X is an extended
metric, but probably not a metric, because H(A,B) could be equal to +∞
for certain metric space X and A,B ∈ C(X). The Hausdorff distance H on
C(X) ∪ {∅} is an extended metric, but not a metric.
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Clearly, ifH on C(X) induced by d is not a metric, thenH on C(X×[0, 1])
induced by d is also not a metric. So the Hausdorff distanceH on C(X×[0, 1])
induced by d on X × [0, 1] is an extended metric but probably not a metric.

We can see that H on C(Rm) is an extended metric but not a metric, and
then the same is H on C(Rm × [0, 1]).

In the cases that the Hausdorff distance H is a metric, we call the Haus-
dorff distance the Hausdorff metric. In the cases that the Hausdorff distance
H is an extended metric, we call the Hausdorff distance the Hausdorff ex-
tended metric. In this paper, for simplicity, we refer to both the Hausdorff
extended metric and the Hausdorff metric as the Hausdorff metric.

For u ∈ F (X), define

endu := {(x, t) ∈ X × [0, 1] : u(x) ≥ t},
sendu := {(x, t) ∈ X × [0, 1] : u(x) ≥ t} ∩ ([u]0 × [0, 1]).

endu and sendu are called the endograph and the sendograph of u, respec-
tively.

Let u ∈ F (X). The following properties (i)-(iii) are equivalent:
(i) u ∈ FUSC(X);
(ii) endu is closed in (X × [0, 1], d);
(iii) sendu is closed in (X × [0, 1], d).

(i)⇒(ii). Assume that (i) is true. To show that (ii) is true, let {(xn, αn)}
be a sequence in endu which converges to (x, α) in X × [0, 1], we only need
to show that (x, α) ∈ endu. Since u is upper semi-continuous, then u(x) ≥
lim supn→∞ u(xn) ≥ limn→∞ αn = α. Thus (x, α) ∈ endu. So (ii) is true.

(ii)⇒(iii). Assume that (ii) is true. Note that [u]0 × [0, 1] is closed in
X × [0, 1], then sendu = endu ∩ ([u]0 × [0, 1]) is closed in X × [0, 1]. So (iii)
is true.

(iii)⇒(i). Assume that (iii) is true. To show that (i) is true, let α ∈ [0, 1]
and suppose that {xn} is a sequence in [u]α which converges to x in X, we
only need to show that x ∈ [u]α. Note that {(xn, α)} converges to (x, α)
in X × [0, 1], and that the sequence {(xn, α)} is in sendu. Hence from
the closedness of sendu, it follows that (x, α) ∈ sendu, which means that
x ∈ [u]α. So (i) is true.

Let u ∈ F (X). Clearly X × {0} ⊆ endu. So endu 6= ∅. We can see that
sendu = ∅ if and only if u = ∅F (X).

From the above discussions, we know that u ∈ FUSC(X) if and only if
endu ∈ C(X × [0, 1]).
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Kloeden [8] introduced the endograph metric Hend. For u, v ∈ FUSC(X),

Hend(u, v) := H(endu, end v),

where H is the Hausdorff metric on C(X × [0, 1]) induced by d on X × [0, 1].
Rojas-Medar and Román-Flores [20] introduced the Γ-convergence of

a sequence of upper semi-continuous fuzzy sets based on the Kuratowski
convergence of a sequence of sets in a metric space.

Let (X, d) be a metric space. Let C be a set in X and {Cn} a sequence of
sets in X. {Cn} is said to Kuratowski converge to C according to (X, d),
if

C = lim inf
n→∞

Cn = lim sup
n→∞

Cn,

where

lim inf
n→∞

Cn = {x ∈ X : x = lim
n→∞

xn, xn ∈ Cn},

lim sup
n→∞

Cn = {x ∈ X : x = lim
j→∞

xnj
, xnj

∈ Cnj
} =

∞⋂
n=1

⋃
m≥n

Cm.

In this case, we’ll write C = lim(K)
n→∞ Cn according to (X, d). If there is

no confusion, we will not emphasize the metric space (X, d) and write {Cn}
Kuratowski converges to C or C = lim(K)

n→∞Cn for simplicity.

Remark 2.2. Theorem 5.2.10 in [22] pointed out that, in a first countable
Hausdorff topological space, a sequence of sets is Kuratowski convergent is
equivalent to this sequence is Fell topology convergent. A metric space is of
course a first countable Hausdorff topological space.

Definition 3.1.4 in [23] gives the definitions of lim inf Cn, lim supCn and
limCn for a net of subsets {Cn, n ∈ D} in a topological space. When {Cn, n =
1, 2, . . .} is a sequence of subsets of a metric space, lim inf Cn, lim supCn and
limCn according to Definition 3.1.4 in [23] are lim infn→∞Cn, lim supn→∞Cn
and lim(K)

n→∞Cn according to the above definitions, respectively.

Let u, un, n = 1, 2, . . ., be fuzzy sets in FUSC(X). {un} is said to Γ-
converge to u, denoted by u = lim(Γ)

n→∞ un, if endu = lim(K)
n→∞ endun

according to (X × [0, 1], d).
The following Theorem 2.3 is an already known conclusion, which is useful

in this paper.
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Theorem 2.3. Suppose that C, Cn are sets in C(X), n = 1, 2, . . .. Then
H(Cn, C)→ 0 implies that lim(K)

n→∞Cn = C.

Remark 2.4. Theorem 2.3 implies that for a sequence {un} in FUSC(X) and
an element u in FUSC(X), if Hend(un, u)→ 0 as n→∞, then lim(Γ)

n→∞ un = u.
However, the converse is false. See Example 4.1 in [18].

Theorem 2.3 can be shown in a similar fashion to Theorem 4.1 in [18]. In
Theorem 2.3, we exclude the case that C = ∅.

Remark 2.5. Let {un} be a sequence in FUSC(X) and let {vn} be a subse-
quence of {un}. We can see that

lim inf
n→∞

un ⊆ lim inf
n→∞

vn ⊆ lim sup
n→∞

vn ⊆ lim sup
n→∞

un.

So if there is a u ∈ FUSC(X) with lim(Γ)
n→∞ un = u, then lim(Γ)

n→∞ vn = u.
Clearly, lim(Γ)

n→∞ vn = u does not necessarily imply that lim(Γ)
n→∞ un = u.

A simple example is given below.
For n = 1, 2, . . ., let vn = 1̂F (R). For n = 1, 2, . . ., let un ∈ FUSC(R)

defined by

un =

{
1̂F (R), n is odd,

3̂F (R), n is even.

Then {vn} is a subsequence of {un}. We can see that lim(Γ)
n→∞ vn = 1̂F (R).

However lim(Γ)
n→∞ un does not exist because

lim inf
n→∞

un = R× {0} $ end 1̂F (R) ∨ end 3̂F (R) = lim sup
n→∞

un.

In this paper, for a metric space (Y, ρ) and a subset S in Y , we still use
ρ to denote the induced metric on S by ρ.

3. Representation theorems for various kinds of fuzzy sets

In this section, we give representation theorems for various kinds of fuzzy
sets. These representation theorems are useful in this paper.

The following representation theorem should be a known conclusion. In
this paper we assume that sup ∅ = 0.

Theorem 3.1. Let Y be a nonempty set. If u ∈ F (Y ), then for all α ∈ (0, 1],
[u]α = ∩β<α[u]β.
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Conversely, suppose that {vα : α ∈ (0, 1]} is a family of sets in Y with
vα = ∩β<αvβ for all α ∈ (0, 1]. Define u ∈ F (Y ) by

u(x) := sup{α : x ∈ vα}

for each x ∈ Y . Then u is the unique fuzzy set in Y satisfying that [u]α = vα
for all α ∈ (0, 1].

Proof. Let u ∈ F (Y ) and α ∈ (0, 1]. For each x ∈ Y , x ∈ [u]α ⇔ u(x) ≥
α ⇔ for each β < α, u(x) ≥ β ⇔ for each β < α, x ∈ [u]β. So [u]α =
∩β<α[u]β.

Conversely, suppose that {vα : α ∈ (0, 1]} is a family of sets in Y with
vα = ∩β<αvβ for all α ∈ (0, 1]. Let u ∈ F (Y ) defined by

u(x) := sup{α : x ∈ vα}

for each x ∈ Y . Firstly, we show that for each α ∈ (0, 1], [u]α = vα. To do
this, let α ∈ (0, 1]. We only need to verify that [u]α ⊇ vα and [u]α ⊆ vα.

Let x ∈ vα. Then clearly u(x) ≥ α, i.e. x ∈ [u]α. So [u]α ⊇ vα.
Let x ∈ [u]α. Then sup{β : x ∈ vβ} = u(x) ≥ α. Hence there exists

a sequence {βn, n = 1, 2, . . .} such that 1 ≥ βn ≥ α − 1/n and x ∈ vβn .
Set γ = sup+∞

n=1 βn. Then 1 ≥ γ ≥ α and thus x ∈ ∩+∞
n=1vβn = vγ ⊆ vα. So

[u]α ⊆ vα.
Now we show the uniqueness of u. To do this, assume that v is a fuzzy

set in Y satisfying that [v]α = vα for all α ∈ (0, 1]. Then for each x ∈ Y ,

v(x) = sup{α : x ∈ [v]α} = sup{α : x ∈ vα} = u(x).

So u = v.

Remark 3.2. We can’t find the original reference which gave Theorem 3.1,
so we give a proof here for the self-containing of this paper. Theorem 3.1
and its proof are essentially the same as the Theorem 7.10 in P27 of chinaX-
iv:202110.00083v4 and its proof since the uniqueness of u is obvious.

From Theorem 3.1, it follows immediately below representation theorems
for FUSC(X), F 1

USC(X), FUSCG(X), FCON(X), FUSCB(X), and F 1
USCB(X).

9
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Proposition 3.3. Let (X, d) be a metric space. If u ∈ FUSC(X) (respec-
tively, u ∈ F 1

USC(X), u ∈ FUSCG(X), u ∈ FCON(X)), then
(i) [u]α ∈ C(X) ∪ {∅} (respectively, [u]α ∈ C(X), [u]α ∈ K(X) ∪ {∅}, [u]α
is connected in (X, d)) for all α ∈ (0, 1], and
(ii) [u]α =

⋂
β<α[u]β for all α ∈ (0, 1].

Conversely, suppose that the family of sets {vα : α ∈ (0, 1]} satisfies
conditions (i) and (ii). Define u ∈ F (X) by u(x) := sup{α : x ∈ vα} for
each x ∈ X. Then u is the unique fuzzy set in X satisfying that [u]α = vα
for each α ∈ (0, 1]. Moreover, u ∈ FUSC(X) (respectively, u ∈ F 1

USC(X),
u ∈ FUSCG(X), u ∈ FCON(X)).

Proof. The proof is routine. We only show the case of FUSC(X). The other
cases can be verified similarly.

If x ∈ FUSC(X), then clearly (i) is true. From Theorem 3.1, (ii) is true.
Conversely, suppose that the family of sets {vα : α ∈ (0, 1]} satisfies

conditions (i) and (ii). Define u ∈ F (X) by u(x) := sup{α : x ∈ vα} for each
x ∈ X. Then by Theorem 3.1, u is the unique fuzzy set in X satisfying that
[u]α = vα for each α ∈ (0, 1]. Since {[u]α, α ∈ (0, 1]} satisfies condition (i),
u ∈ FUSC(X).

Proposition 3.4. Let (X, d) be a metric space. If u ∈ FUSCB(X) (respec-
tively, u ∈ F 1

USCB(X)), then
(i) [u]α ∈ K(X) ∪ {∅} (respectively, [u]α ∈ K(X)) for all α ∈ [0, 1],
(ii) [u]α =

⋂
β<α[u]β for all α ∈ (0, 1], and

(iii) [u]0 =
⋃
β>0[u]β.

Conversely, suppose that the family of sets {vα : α ∈ [0, 1]} satisfies
conditions (i) through (iii). Define u ∈ F (X) by u(x) := sup{α : x ∈ vα} for
each x ∈ X. Then u is the unique fuzzy set in X satisfying that [u]α = vα
for each α ∈ [0, 1]. Moreover, u ∈ FUSCB(X) (respectively, u ∈ F 1

USCB(X)).

Proof. The proof is routine. We only show the case of FUSCB(X). The case
of F 1

USCB(X) can be verified similarly.
If x ∈ FUSCB(X), then clearly (i) is true. By Theorem 3.1, (ii) is true.

From the definition of [u]0, (iii) is true.
Conversely, suppose that the family of sets {vα : α ∈ [0, 1]} satisfies

conditions (i) through (iii). Define u ∈ F (X) by u(x) := sup{α : x ∈ vα} for
each x ∈ X. Then by Theorem 3.1, u is the unique fuzzy set in X satisfying

10
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that [u]α = vα for each α ∈ (0, 1]. Clearly [u]0 =
⋃
β>0[u]β =

⋃
β>0 vβ = v0.

Since {[u]α, α ∈ [0, 1]} satisfies condition (i), u ∈ FUSCB(X).

Similarly, we can obtain the representation theorems for FUSCCON(X),
FUSCGCON(X), F 1

USCCON(X), etc.
Based on these representation theorems, we can define a fuzzy set or a

certain type fuzzy set by giving the family of its α-cuts. In the sequel, we
will directly point out that what we defined is a fuzzy set or a certain type
fuzzy set without saying which representation theorem is used since it is easy
to see.

4. Characterization of compactness in (FUSCG(X),Hend)

In this section, we give the characterizations of relatively compact sets,
totally bounded sets, and compact sets in (FUSCG(X), Hend), respectively.
We point out that these results improve the characterizations of relatively
compact sets, totally bounded sets, and compact sets in (FUSCG(Rm), Hend)
given in our previous work [18], respectively.

• A subset Y of a topological space Z is said to be compact if for every set
I and every family of open sets, Oi, i ∈ I, such that Y ⊂

⋃
i∈I Oi there

exists a finite family Oi1 , Oi2 . . . , Oin such that Y ⊆ Oi1∪Oi2∪. . .∪Oin .
In the case of a metric topology, the criterion for compactness becomes
that any sequence in Y has a subsequence convergent in Y .

• A relatively compact subset Y of a topological space Z is a subset with
compact closure. In the case of a metric topology, the criterion for
relative compactness becomes that any sequence in Y has a subsequence
convergent in X.

• Let (X, d) be a metric space. A set U in X is totally bounded if and
only if, for each ε > 0, it contains a finite ε approximation, where an ε
approximation to U is a subset S of U such that d(x, S) < ε for each
x ∈ U . An ε approximation to U is also called an ε-net of U .

Let (X, d) be a metric space. A set U is compact in (X, d) implies that
U is relatively compact in (X, d), which in turn implies that U is totally
bounded in (X, d). Let Y be a subset of X and A a subset of Y . Then A is
totally bounded in (Y, d) if and only if A is totally bounded in (X, d).

11
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Theorem 4.1. [19] Let (X, d) be a metric space and D ⊆ K(X). Then D
is totally bounded in (K(X), H) if and only if D =

⋃
{C : C ∈ D} is totally

bounded in (X, d).

Theorem 4.2. [14] Let (X, d) be a metric space and D ⊆ K(X). Then D
is relatively compact in (K(X), H) if and only if D =

⋃
{C : C ∈ D} is

relatively compact in (X, d).

Theorem 4.3. [19] Let (X, d) be a metric space and D ⊆ K(X). Then the
following are equivalent:
(i) D is compact in (K(X), H);
(ii) D =

⋃
{C : C ∈ D} is relatively compact in (X, d) and D is closed in

(K(X), H);
(iii) D =

⋃
{C : C ∈ D} is compact in (X, d) and D is closed in (K(X), H).

Let u ∈ FUSC(X). Define ue = endu. Let A be a subset of FUSC(X).
Define Ae = {ue : u ∈ A}. Clearly FUSC(X)e ⊆ C(X × [0, 1]).

Define g : (FUSC(X), Hend) → (C(X × [0, 1]), H) given by g(u) = endu.
Then

• g is an isometric embedding of (FUSC(X), Hend) in (C(X × [0, 1]), H),

• g(FUSC(X)) = FUSC(X)e, and

• (FUSC(X), Hend) is isometric to (FUSC(X)e, H).

The following representation theorem for FUSC(X)e follows immediately
from Proposition 3.3.

Proposition 4.4. Let U be a subset of X × [0, 1]. Then U ∈ FUSC(X)e if
and only if the following properties (i)-(iii) are true.
(i) For each α ∈ (0, 1], 〈U〉α ∈ C(X) ∪ {∅}.
(ii) For each α ∈ (0, 1], 〈U〉α =

⋂
β<α〈U〉β.

(iii) 〈U〉0 = X.

Proposition 4.5. Let U ∈ C(X× [0, 1]). Then the following (i) and (ii) are
equivalent.
(i) For each α with 0 < α ≤ 1, 〈U〉α =

⋂
β<α〈U〉β.

(ii) For each α, β with 0 ≤ β < α ≤ 1, 〈U〉α ⊆ 〈U〉β.
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Proof. The proof is routine. (i)⇒(ii) is obviously.
Suppose that (ii) is true. To show that (i) is true, let α ∈ (0, 1]. From

(ii), 〈U〉α ⊆
⋂
β<α〈U〉β. So we only need to prove that 〈U〉α ⊇

⋂
β<α〈U〉β.

To do this, let x ∈
⋂
β<α〈U〉β. This means that (x, β) ∈ U for β ∈ [0, α).

Since limβ→α− d((x, β), (x, α)) = 0, from the closedness of U , it follows that
(x, α) ∈ U . Hence x ∈ 〈U〉α. Thus 〈U〉α ⊇

⋂
β<α〈U〉β from the arbitrariness

of x in
⋂
β<α〈U〉β. So (ii)⇒(i).

Proposition 4.6. Let U ∈ C(X × [0, 1]). Then U ∈ FUSC(X)e if and only
if U has the following properties:
(i) for each α, β with 0 ≤ β < α ≤ 1, 〈U〉α ⊆ 〈U〉β, and
(ii) 〈U〉0 = X.

Proof. Since U ∈ C(X × [0, 1]), then clearly 〈U〉α ∈ C(X) ∪ {∅} for all
α ∈ [0, 1]. Thus the desired result follows immediately from Propositions 4.4
and 4.5.

As a shorthand, we denote the sequence x1, x2, . . . , xn, . . . by {xn}.

Proposition 4.7. FUSC(X)e is a closed subset of (C(X × [0, 1]), H).

Proof. Let {uen : n = 1, 2, . . .} be a sequence in FUSC(X)e with {uen} con-
verging to U in (C(X × [0, 1]), H). To show the desired result, we only need
to show that U ∈ FUSC(X)e.

We claim that
(i) for each α, β with 0 ≤ β < α ≤ 1, 〈U〉α ⊆ 〈U〉β;
(ii) 〈U〉0 = X.

To show (i), let α, β in [0, 1] with β < α, and let x ∈ 〈U〉α, i.e. (x, α) ∈ U .
By Theorem 2.3, lim(K)

n→∞ u
e
n = U . Then there is a sequence {(xn, αn)}

satisfying (xn, αn) ∈ uen for n = 1, 2, . . . and limn→∞ d((xn, αn), (x, α)) = 0.
Hence there is an N such that αn > β for all n ≥ N . Thus (xn, β) ∈ uen for
n ≥ N . Note that limn→∞ d((xn, β), (x, β)) = 0. Then (x, β) ∈ lim(K)

n→∞ u
e
n =

U . This means that x ∈ 〈U〉β. So (i) is true.

Clearly 〈U〉0 ⊆ X. From lim(K)
n→∞ u

e
n = U and 〈uen〉0 = X, we have that

〈U〉0 ⊇ X. Thus 〈U〉0 = X. So (ii) is true.
By Proposition 4.6, (i) and (ii) imply that U ∈ FUSC(X)e.
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Remark 4.8. Let a ∈ [0, 1]. From Proposition 5.1, we can deduce that
F

′a
USC(X) is a closed subset of (FUSC(X), Hend). Then by Proposition 4.7, we

have that F
′a
USC(X)e is a closed subset of (C(X × [0, 1]), H).

We use (X̃, d̃) to denote the completion of (X, d). We see (X, d) as a

subspace of (X̃, d̃).
If there is no confusion, we also use H to denote the Hausdorff metric

on C(X̃) induced by d̃. We also use H to denote the Hausdorff metric on

C(X̃× [0, 1]) induced by d̃. We also use Hend to denote the endograph metric

on FUSC(X̃) given by using H on C(X̃ × [0, 1]).

F (X) can be naturally embedded into F (X̃). An embedding j from F (X)

to F (X̃) is defined as follows.

Let u ∈ F (X). We can define j(u) ∈ F (X̃) as

j(u)(t) =

{
u(t), t ∈ X,
0, t ∈ X̃ \X.

Let U ⊆ X. If U is compact in (X, d), then U is compact in (X̃, d̃). So if

u ∈ FUSCG(X), then j(u) ∈ FUSCG(X̃) because [j(u)]α = [u]α ⊆ K(X̃)∪{∅}
for each α ∈ (0, 1].

We can see that for u, v ∈ FUSCG(X), Hend(u, v) = Hend(j(u), j(v)). So

j|FUSCG(X) is an isometric embedding of (FUSCG(X), Hend) in (FUSCG(X̃), Hend).

Since (FUSCG(X), Hend) can be embedded isometrically in (FUSCG(X̃), Hend),

in the sequel, we treat (FUSCG(X), Hend) as a metric subspace of (FUSCG(X̃), Hend)

by identifying u in FUSCG(X) with j(u) in FUSCG(X̃). So a subset U of

FUSCG(X) can be seen as a subset of FUSCG(X̃).
Suppose that U is a subset of FUSC(X) and α ∈ [0, 1]. For writing

convenience, we denote

• U(α) :=
⋃
u∈U [u]α, and

• Uα := {[u]α : u ∈ U}.

Here we mention that an empty union is ∅.

Lemma 4.9. Let U be a subset of FUSCG(X). If U is totally bounded in
(FUSCG(X), Hend), then U(α) is totally bounded in (X, d) for each α ∈ (0, 1].
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Proof. The proof is similar to that of the necessity part of Theorem 7.8 in
[19].

Let α ∈ (0, 1]. To show that U(α) is totally bounded in X, we only need
to show that each sequence in U(α) has a Cauchy subsequence.

Let {xn} be a sequence in U(α). Then there is a sequence {un} in U with
xn ∈ [un]α for n = 1, 2, . . .. Since U is totally bounded in (FUSCG(X), Hend),
{un} has a Cauchy subsequence {unl

} in (FUSCG(X), Hend). So given ε ∈
(0, α), there is a K(ε) ∈ N such that

Hend(unl
, unK

) < ε

for all l ≥ K. Thus
H∗([unl

]α, [unK
]α−ε) < ε (2)

for all l ≥ K. From (2) and the arbitrariness of ε,
⋃+∞
l=1 [unl

]α is totally
bounded in (X, d). Thus {xnl

}, which is a subsequence of {xn}, has a Cauchy
subsequence, and so does {xn}.

Remark 4.10. It is easy to see that for a totally bounded set U in (FUSCG(X), Hend)
and α ∈ (0, 1], U(α) = ∅ is possible even if U 6= ∅.

For D ⊆ X × [0, 1] and α ∈ [0, 1], define 〈D〉α := {x : (x, α) ∈ D}.
Let u ∈ F (X) and 0 ≤ r ≤ t ≤ 1. We use the symbol endtr u to denote

the subset of endu given by

endtr u := endu ∩ ([u]r × [r, t]).

For simplicity, we write end1
r u as endr u. We can see that end0 u = sendu.

Theorem 4.11. Let U be a subset of FUSCG(X). Then U is relatively com-
pact in (FUSCG(X), Hend) if and only if U(α) is relatively compact in (X, d)
for each α ∈ (0, 1].

Proof. Necessity . Suppose that U is relatively compact in (FUSCG(X), Hend).
Let α ∈ (0, 1]. Then by Lemma 4.9, U(α) is totally bounded. Hence U(α) is

relatively compact in (X̃, d̃).
To show that U(α) is relatively compact in (X, d), we proceed by contra-

diction. If this were not the case, then there exists a sequence {xn} in U(α)

such that {xn} converges to x ∈ X̃ \X in (X̃, d̃).
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Assume that xn ∈ [un]α and un ∈ U , n = 1, 2, . . .. From the relative
compactness of U , there is a subsequence {unk

} of {un} such that {unk
}

converges to u ∈ FUSCG(X). Since FUSCG(X) can be seen as a subspace of

FUSCG(X̃), we obtain that {unk
} converges to u in (FUSCG(X̃), Hend). By

Theorem 2.3, lim
(K)
k→∞ u

e
nk

= ue according to (X̃ × [0, 1], d̃). Notice that

(xnk
, α) ∈ uenk

for k = 1, 2, . . ., and {(xnk
, α)} converges to (x, α) in (X̃ ×

[0, 1], d̃). Thus (x, α) ∈ ue, which contradicts x ∈ X̃ \X.
It can be seen that the necessity part of Theorem 7.10 in [19] can be

verified in a similar manner to that in the necessity part of this theorem.
Sufficiency . Suppose that U(α) is relatively compact in (X, d) for each

α ∈ (0, 1]. To show that U is relatively compact in (FUSCG(X), Hend), we
only need to show that each sequence in U has a convergent subsequence in
(FUSCG(X), Hend).

Let {un} be a sequence in U . If lim infn→∞ Sun = 0, i.e. there is
a subsequence {unk

} of {un} such that limk→∞ Sunk
= 0. Then clearly

Hend(unk
, ∅F (X)) = Sunk

→ 0 as k → ∞. Since ∅F (X) ∈ FUSCG(X), {unk
} is

a convergent subsequence in (FUSCG(X), Hend).
If lim infn→∞ Sun > 0, then there is a ξ > 0 and an N ∈ N such that

[un]ξ 6= ∅ for all n ≥ N .
First we claim the following property:

(a) Let α ∈ (0, 1] and S be a subset of U with [u]α 6= ∅ for each u ∈ S. Then
{endαu : u ∈ S} is a relatively compact set in (K(X × [α, 1]), H).

It can be seen that for each u ∈ S, endα u ∈ K(X × [α, 1]).
As U(α) is relatively compact in (X, d), U(α) × [α, 1] is relatively com-

pact in (X × [α, 1], d). Since
⋃
u∈S endαu is a subset of U(α) × [α, 1], then⋃

u∈S endαu is also a relatively compact set in (X × [α, 1], d). Thus by The-
orem 4.2, {endαu : u ∈ S} is relatively compact in (K(X × [α, 1]), H). So
affirmation (a) is true.

Take a sequence {αk, k = 1, 2, . . .} which satisfies that 0 < αk+1 < αk ≤
min{ξ, 1

k
} for k = 1, 2, . . .. We can see that αk → 0 as k →∞.

By affirmation (a), {endα1 un : n = N,N + 1, . . .} is relatively compact

in (K(X × [α1, 1]), H). So there is a subsequence {u(1)
n } of {un : n ≥ N} and

v1 ∈ K(X × [α1, 1]) such that H(endα1 u
(1)
n , v1)→ 0. Clearly, {u(1)

n } is also a
subsequence of {un}.
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Again using affirmation (a), {endα2 u
(1)
n } is relatively compact in (K(X×

[α2, 1]), H). So there is a subsequence {u(2)
n } of {u(1)

n } and v2 ∈ K(X×[α2, 1])

such that H(endα2 u
(2)
n , v2)→ 0.

Repeating the above procedure, we can obtain {u(k)
n } and vk ∈ K(X ×

[αk, 1]), k = 1, 2, . . ., such that for each k = 1, 2, . . ., {u(k+1)
n } is a subsequence

of {u(k)
n } and H(endαk

u
(k)
n , vk)→ 0.

We claim that

(b) Let k1 and k2 be in N with k1 < k2. Then
(i) 〈vk1〉αk1

⊆ 〈vk2〉αk1
,

(ii) 〈vk1〉α = 〈vk2〉α when α ∈ (αk1 , 1],
(iii) vk ⊆ vk+1 for k = 1, 2, . . ..

Note that {u(k2)
n } is a subsequence of {u(k1)

n } and that αk2 < αk1 . Thus
by Theorem 2.3, for each α ∈ [αk1 , 1],

〈vk1〉α × {α}
= lim inf

n→∞
endαk1

u(k1)
n ∩ (X × {α})

⊆ lim inf
n→∞

endαk2
u(k2)
n ∩ (X × {α})

= 〈vk2〉α × {α}. (3)

So (i) is true.
Let α ∈ [0, 1] with α > αk1 . Observe that if a sequence {(xm, βm)}

converges to a point (x, α) as m →∞ in (X × [0, 1], d), then there is an M
such that for all m > M , βm > αk1 , i.e. (xm, βm) ∈ X × (αk1 , 1]. Thus by
Theorem 2.3, for each α ∈ (αk1 , 1],

〈vk1〉α × {α}
= lim sup

n→∞
endαk1

u(k1)
n ∩ (X × {α})

⊇ lim sup
n→∞

endαk2
u(k2)
n ∩ (X × {α})

= 〈vk2〉α × {α}. (4)

Hence by (3) and (4), 〈vk1〉α = 〈vk2〉α for α ∈ (αk1 , 1]. So (ii) is true. (iii)
follows immediately from (i) and (ii).

Define a subset v of X × [0, 1] given by

v = ∪+∞
k=1v

k ∪ (X × {0}). (5)
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From affirmation (b), we can see that

〈v〉α =

{
〈vk〉α, if for some k ∈ N, α > αk,
X, if α = 0,

(6)

and hence

v ∩ (X × (αk, 1]) = vk ∩ (X × (αk, 1]) ⊆ vk. (7)

We show that v ∈ C(X × [0, 1]). To this end, let {(xl, γl)} be a sequence
in v which converges to an element (x, γ) in X × [0, 1]. If γ = 0, then clearly
(x, γ) ∈ v. If γ > 0, then there is a k0 ∈ N such that γ > αk0 . Hence there
is an L such that γl > αk0 when l ≥ L. So by (7), (xl, γl) ∈ vk0 when l ≥ L.
Since vk0 ∈ K(X × [αk0 , 1]), it follows that (x, γ) ∈ vk0 ⊂ v.

We claim that

(c) limn→∞H(endu
(n)
n , v) = 0 and v ∈ FUSCG(X)e.

Let n ∈ N and k ∈ N. Then by (5),

H∗(endu(n)
n , v) = max{H∗(endαk

u(n)
n , v), H∗(endαk

0 u(n)
n , v)}

≤ max{H∗(endαk
u(n)
n , vk), αk}, (8)

and by (7),

H∗(v, endu(n)
n ) = max{ sup

(x,γ)∈v∩(X×(αk,1]

d((x, γ), endu(n)
n ), H∗(v ∩ (X × [0, αk]), endu(n)

n )}

≤ max{H∗(vk, endαk
u(n)
n ), αk}. (9)

Clearly, (8) and (9) imply that

H(endu(n)
n , v) ≤ max{H(endαk

u(n)
n , vk), αk}. (10)

Now we show that

lim
n→∞

H(endu(n)
n , v) = 0. (11)

To see this, let ε > 0. Notice that αk → 0 and for each αk, k = 1, 2, . . .,
limn→∞H(endαk

u
(n)
n , vk) = 0. Then there is an αk0 and an N ∈ N such

that αk0 < ε and H(endαk0
u

(n)
n , vk0) < ε for all n ≥ N . Thus by (10),

H(endu
(n)
n , v) < ε for all n ≥ N . So (11) is true.
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Since the sequence {endu
(n)
n } is in FUSC(X)e and {endu

(n)
n } converges to

v in (C(X × [0, 1]), H), by Proposition 4.7, it follows that v ∈ FUSC(X)e.
Let k ∈ N. Then vk ∈ K(X × [αk, 1]), and hence 〈vk〉α ∈ K(X)∪ {∅} for

all α ∈ [0, 1]. So from (6), 〈v〉α ∈ K(X) ∪ {∅} for all α ∈ (0, 1], and thus
v ∈ FUSCG(X)e.

From affirmation (c), we have that {u(n)
n } is a convergent sequence in

(FUSCG(X), Hend). Note that {u(n)
n } is a subsequence of {un}. Thus the

proof is completed.

Theorem 4.12. Let U be a subset of FUSCG(X). Then U is totally bounded
in (FUSCG(X), Hend) if and only if U(α) is totally bounded in (X, d) for each
α ∈ (0, 1].

Proof. Necessity . The necessity part is Lemma 4.9.
Sufficiency . Suppose that U(α) is totally bounded in (X, d) for each

α ∈ (0, 1]. Then U(α) is relatively compact in (X̃, d̃) for each α ∈ (0, 1].

Thus by Theorem 4.11, U is relatively compact in (FUSCG(X̃), Hend). Hence

U is totally bounded in (FUSCG(X̃), Hend). So clearly U is totally bounded
in (FUSCG(X), Hend).

Theorem 4.13. Let U be a subset of FUSCG(X). Then the following are
equivalent:

(i) U is compact in (FUSCG(X), Hend);

(ii) U(α) is relatively compact in (X, d) for each α ∈ (0, 1] and U is closed
in (FUSCG(X), Hend);

(iii) U(α) is compact in (X, d) for each α ∈ (0, 1] and U is closed in
(FUSCG(X), Hend).

Proof. By Theorem 4.11, (i) ⇔ (ii). Obviously (iii) ⇒ (ii). We shall com-
plete the proof by showing that (ii) ⇒ (iii). Suppose that (ii) is true. To
verify (iii), it suffices to show that U(α) is closed in (X, d) for each α ∈ (0, 1].
To do this, let α ∈ (0, 1] and let {xn} be a sequence in U(α) with {xn}
converges to an element x in (X, d). We only need to show that x ∈ U(α).

Pick a sequence {un} in U such that xn ∈ [un]α for n = 1, 2, . . ., which
means that (xn, α) ∈ endun for n = 1, 2, . . ..
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From the equivalence of (i) and (ii), U is compact in (FUSCG(X), Hend). So
there exists a subsequence {unk

} of {un} and u ∈ U such that Hend(unk
, u)→

0. Hence by Remark 2.4, lim(Γ)
n→∞ unk

= u. Note that (x, α) = limk→∞(xnk
, α).

Thus
(x, α) ∈ lim inf

n→∞
endunk

= endu.

So x ∈ [u]α, and therefore x ∈ U(α).
It can be seen that Theorem 7.11 in [19] can be verified in a similar

manner to that in this theorem.

We [18] gave the following characterizations of compactness in (FUSCG(Rm), Hend).

Theorem 4.14. (Theorem 7.1 in [18]) Let U be a subset of FUSCG(Rm).
Then U is a relatively compact set in (FUSCG(Rm), Hend) if and only if U(α)
is a bounded set in Rm when α ∈ (0, 1].

Theorem 4.15. (Theorem 7.3 in [18]) Let U be a subset of FUSCG(Rm).
Then U is a totally bounded set in (FUSCG(Rm), Hend) if and only if, for each
α ∈ (0, 1], U(α) is a bounded set in Rm.

Theorem 4.16. (Theorem 7.2 in [18]) U is a compact set in (FUSCG(Rm), Hend)
if and only if U is a closed set in (FUSCG(Rm), Hend) and U(α) is a bounded
set in Rm when α ∈ (0, 1].

Let S be a set in Rm. Then the following properties are equivalent.
(i) S is a bounded set in Rm.
(ii) S is a totally bounded set in Rm.
(iii) S is a relatively compact set in Rm.

Using the above well-known fact, we can see that Theorem 4.11 implies
Theorem 4.14; Theorem 4.12 implies Theorem 4.15; Theorem 4.13 implies
Theorem 4.16.

So the characterizations of relative compactness, total boundedness, and
compactness in (FUSCG(Rm), Hend) given in our previous work [18] are corol-
laries of the characterizations of relative compactness, total boundedness,
and compactness of (FUSCG(X), Hend) given in this section, respectively.

Furthermore, the characterizations of relative compactness, total bound-
edness, and compactness of (FUSCG(X), Hend) given in this section illustrate
the relationship between relative compactness, total boundedness, and com-
pactness of a set in FUSCG(X) and that of the union of its elements’ α-cuts.
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From above discussions, we can see that the characterizations of relative
compactness, total boundedness, and compactness of (FUSCG(X), Hend) given
in this section significantly improve the characterizations of relative compact-
ness, total boundedness, and compactness in (FUSCG(Rm), Hend) given in our
previous work [18].

Remark 4.17. The following clauses (i) and (ii) are pointed out in Remark
5.1 of chinaXiv:202107.00011v2 (we submitted it on 2021-07-22).
(i) (F 1

USCG(X), Hend) can be treated as a subspace of (C(X × [0, 1]), H) by
seeing each u ∈ F 1

USCG(X) as its endograph.
(ii) We can discuss the properties of (F 1

USCG(X), Hend) by treating (F 1
USCG(X), Hend)

as a subspace of (C(X×[0, 1]), H). These properties include characterizations
of total boundedness, relative compactness and compactness of (F 1

USCG(X), Hend).
In this paper, we treat (FUSCG(X), Hend) as a subspace of (C(X×[0, 1]), H)

to discuss the properties of (FUSCG(X), Hend).

At the end of this section, we illustrate that Theorems 4.2, 4.1 and 4.3
can be seen as special cases of Theorems 4.11, 4.12, and 4.13, respectively.
We begin with some propositions.

The following proposition follows immediately from the basic definitions.

Proposition 4.18. Let A be a subset of X.
(i) The conditions (i-1) A is a set in C(X), and (i-2) χA is a fuzzy set in
FUSC(X), are equivalent.
(ii) The conditions (ii-1) A is a set in K(X), (ii-2) χA is a fuzzy set in
FUSCB(X), and (ii-3) χA is a fuzzy set in FUSCG(X), are equivalent.

Let D ⊆ P (X). We use the symbol DF (X) to denote the set {CF (X) : C ∈
D}.

Let A,B ∈ C(X). Then

Hend(χA, χB) = min{H(A,B), 1}. (12)

Proposition 4.19. Let D be a subset of K(X).
(i) D is totally bounded in (K(X), H) if and only if DF (X) is totally bounded
in (FUSCG(X), Hend);
(ii) D is compact in (K(X), H) if and only if DF (X) is compact in (FUSCG(X), Hend).

Proof. From (12), it follows immediately that (i) is true.
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By (12), we have that D is compact in (K(X), H) if and only if DF (X) is
compact in (K(X)F (X), Hend). Clearly DF (X) is compact in (K(X)F (X), Hend)
if and only if DF (X) is compact in (FUSCG(X), Hend). So (ii) is true.

Proposition 4.20. Let {An} be a sequence of sets in C(X). If {χAn} con-
verges to a fuzzy set u in FUSC(X) according to the Hend metric, then there
is an A ∈ C(X) such that u = χA and H(An, A)→ 0 as n→∞.

Proof. We will show in turn, the following properties (i), (ii) and (iii).
(i) Let x ∈ X and α, β ∈ (0, 1]. Then (x, α) ∈ endu if and only if (x, β) ∈
endu.
(ii) [u]α = [u]β for all α, β ∈ [0, 1].
(iii) There is an A in C(X) such that u = χA and H(An, A)→ 0 as n→∞.

To show (i), we only need to show that if (x, α) ∈ endu then (x, β) ∈ endu
since α and β can be interchanged.

Assume that (x, α) ∈ endu. Since Hend(χAn , u) → 0, by Theorem 2.3
and Remark 2.4, lim(Γ)

n→∞ χAn = u. Then there is a sequence {(xn, αn)} such
that (xn, αn) ∈ endχAn for n = 1, 2, . . ., and limn→∞ d((xn, αn), (x, α)) = 0.
As α > 0, it follows that there exists an N such that αn > 0 for all n ≥ N .
This yields that (xn, αn) ∈ sendχAn = An × [0, 1] for all n ≥ N . Hence
(xn, β) ∈ sendχAn for all n ≥ N . Observe that limn→∞ d((xn, β), (x, β)) = 0,
i.e. {(xn, β) : n ≥ N} converges to (x, β) in (X × [0, 1], d). Thus we have
(x, β) ∈ lim infn→∞ endχAn = endu. So (i) is true.

From (i), we have that [u]α = [u]β for all α, β ∈ (0, 1]. Then [u]0 =

∪α>0[u]α = [u]1. So (ii) is true.
Set A = [u]1. By Proposition 5.1, u ∈ F ′1

USC(X). From this and (ii), it
follows that A ∈ C(X) and u = χA.

Since by (12),

Hend(χAn , u) = Hend(χAn , χA) = min{H(An, A), 1} → 0 as n→∞,

we obtain that H(An, A)→ 0 as n→∞. So (iii) is true. This completes the
proof.

Proposition 4.21. Let {xn} be a sequence in X. If {x̂n} converges to a
fuzzy set u in FUSC(X) according to the Hend metric, then there is an x ∈ X
such that u = x̂ and d(xn, x)→ 0 as n→∞.
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Proof. Note that ẑ = χ{z} for each z ∈ X. Thus by Proposition 4.20, there
is an A ∈ C(X) such that u = χA and H({xn}, A) → 0 as n → ∞. Since
lim(K)

n→∞{xn} = A, it follows that A is a singleton. Set A = {x}. Then u = x̂
and d(xn, x) = H({xn}, {x})→ 0 as n→∞. This completes the proof.

Proposition 4.21 is Proposition 8.15 in our paper arXiv:submit/4644498.
It can be seen that we can also use the idea in the proof of Proposition 4.20
to show Proposition 4.21 directly.

It can be seen that using the idea in the proof of Proposition 8.15 in
arXiv:submit/4644498, we can show that A in the proof of Proposition 4.21
is a singleton as follows.

Assume that A has at least two distinct elements. Pick p, q in A with p 6=
q. Let z ∈ X. Since d(p, z)+d(q, z) ≥ d(p, q), it follows that max{d(p, z), d(q, z)} ≥
1
2
d(p, q). Thus H(A, {xn}) = H∗(A, {xn}) ≥ 1

2
d(p, q), which contradicts

H(A, {xn})→ 0 as n→∞.

Proposition 4.22. Let D be a subset of K(X) and B a subset of C(X).
(i) C(X)F (X) is closed in (FUSC(X), Hend).
(ii) K(X)F (X) is closed in (FUSCG(X), Hend).
(iii) D is closed in (K(X), H) if and only if DF (X) is closed in (FUSCG(X), Hend).
(iv) D is relatively compact in (K(X), H) if and only if DF (X) is relatively
compact in (FUSCG(X), Hend).
(v) B is closed in (C(X), H) if and only if BF (X) is closed in (FUSC(X), Hend).
(vi) B is relatively compact in (C(X), H) if and only if BF (X) is relatively
compact in (FUSC(X), Hend).

Proof. From Proposition 4.20 we have that (i) is true.
By (i), the closure of K(X)F (X) in (FUSCG(X), Hend) is contained in

FUSCG(X)∩C(X)F (X). From Proposition 4.18 (ii), FUSCG(X)∩C(X)F (X) =
K(X)F (X). Thus the closure of K(X)F (X) in (FUSCG(X), Hend) is K(X)F (X).
So (ii) is true.

Suppose the following conditions: (a-1) D is closed in (K(X), H), (a-2)
DF (X) is closed in (K(X)F (X), Hend), and (a-3)DF (X) is closed in (FUSCG(X), Hend).

By (12), (a-1)⇔(a-2). From (ii), (a-2)⇔(a-3). Thus (a-1)⇔(a-3). So (iii)
is true.

Suppose the following conditions: (b-1)D is relatively compact in (K(X), H),
(b-2) DF (X) is relatively compact in (K(X)F (X), Hend), and (b-3) DF (X) is rel-
atively compact in (FUSCG(X), Hend).
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By (12), (b-1)⇔(b-2). From (ii), (b-2)⇔(b-3). Thus (b-1)⇔(b-3). So
(iv) is true.

Using (12) and (i), (v) and (vi) can be proved in a similar manner to (iii)
and (iv), respectively.

Each subsetD of (K(X), H) corresponds a subsetDF (X) of (FUSCG(X), Hend).
Using Theorems 4.11, 4.12, and 4.13, we obtain the characterizations of rela-
tive compactness, total boundedness, and compactness forDF (X) in (FUSCG(X), Hend)
as follows.

Corollary 4.23. Let D be a subset of K(X). Then DF (X) is relatively com-
pact in (FUSCG(X), Hend) if and only if D =

⋃
{C : C ∈ D} is relatively

compact in (X, d).

Corollary 4.24. Let D be a subset of K(X). Then DF (X) is totally bounded
in (FUSCG(X), Hend) if and only if D =

⋃
{C : C ∈ D} is totally bounded in

(X, d).

Corollary 4.25. Let D be a subset of K(X). Then the following are equiv-
alent:
(i) DF (X) is compact in (FUSCG(X), Hend);
(ii) D =

⋃
{C : C ∈ D} is relatively compact in (X, d) and DF (X) is closed

in (FUSCG(X), Hend);
(iii) D =

⋃
{C : C ∈ D} is compact in (X, d) and DF (X) is closed in

(FUSCG(X), Hend).

From Proposition 4.19 and clauses (iii) and (iv) of Proposition 4.22, we
obtain that Corollaries 4.23, 4.24 and 4.25 are equivalent forms of Theorems
4.2, 4.1 and 4.3, respectively. So we can see Theorems 4.2, 4.1 and 4.3 as
special cases of Theorems 4.11, 4.12, and 4.13, respectively.

5. Characterizations of compactness in (F r
USCG(X),Hend)

In this section, we first investigate the properties of the Hend metric.
Then based on the characterizations of relative compactness, total bound-
edness and compactness in (FUSCG(X), Hend) given in Section 4, we give
characterizations of relatively compact sets, totally bounded sets, and com-
pact sets in (F r

USCG(X), Hend), r ∈ [0, 1]. (F r
USCG(X), Hend), r ∈ [0, 1] are a
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kind of subspaces of (FUSCG(X), Hend). Each element in F r
USCG(X) takes r

as its maximum value. (F 1
USCG(X), Hend) is one of these subspaces.

For D ⊆ X × [0, 1], define SD := sup{α : (x, α) ∈ D}.
We claim that for D,E ∈ C(X × [0, 1]),

H(D,E) ≥ |SD − SE|. (13)

To see this, let D,E ∈ C(X × [0, 1]). If |SD − SE| = 0, then (13) is true.
If |SD − SE| > 0. Assume that SD > SE. Note that for each (x, t) ∈ D
with t > SE, d((x, t), E) ≥ t − SE. Thus H(D,E) ≥ sup{t − SE : (x, t) ∈
D with t > SE} = SD − SE. So (13) is true.

Let u ∈ F (X). Define Su := sup{u(x) : x ∈ X}. We can see that
Su = Sendu. Clearly [u]Su = ∅ is possible.

From (13), we have that for u, v ∈ FUSC(X),

Hend(u, v) ≥ |Su − Sv|. (14)

Proposition 5.1. Let u and un, n = 1, 2, . . ., be fuzzy sets in FUSC(X). If
Hend(un, u)→ 0 as n→∞, then Sun → Su as n→∞.

Proof. The desired result follows immediately from (14).

Let u ∈ F (X). max{u(x) : x ∈ X} may not exist. If max{u(x) : x ∈ X}
exists, then obviously Su = max{u(x) : x ∈ X}. If [u]Su 6= ∅, then, as
Su = sup{u(x) : x ∈ X}, it follows that Su = max{u(x) : x ∈ X}.

Proposition 5.2. (i) Let u ∈ FUSC(X). If there is an α ∈ [0, Su] with
[u]α ∈ K(X), then [u]Su 6= ∅ and Su = max{u(x) : x ∈ X}.

(ii) Let u ∈ FUSCG(X). Then Su = max{u(x) : x ∈ X}.

Proof. First, we show (i). If α = Su, then [u]Su 6= ∅. If α < Su, then pick
a sequence {xn} in [u]α with u(xn) → Su. From the compactness of [u]α,
there is a subsequence {xnk

} of {xn} such that {xnk
} converges to a point x

in [u]α. Thus u(x) ≥ limk→∞ u(xnk
) = Su. Hence u(x) = Su, and therefore

[u]Su 6= ∅ and Su = max{u(x) : x ∈ X}. So (i) is true.
In the α < Su case, we can also prove [u]Su 6= ∅ as follows. Take an

increasing sequence {αk} in [α, 1] with αk → Su−. Then [u]αk
∈ K(X) for

each k = 1, 2, . . ., and thus [u]Su = ∩+∞
k=1[u]αk

∈ K(X). So [u]Su 6= ∅.
Now we show (ii). If u ∈ FUSCG(X) \ {∅F (X)}, then there exists an

α ∈ (0, Su] such that [u]α ∈ K(X). So from (i), Su = max{u(x) : x ∈ X}. If
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u = ∅F (X), then Su = 0 = max{u(x) : x ∈ X}. So for each u ∈ FUSCG(X),
Su = max{u(x) : x ∈ X}.

Let r ∈ [0, 1]. Define

F
′r
USC(X) = {u ∈ FUSC(X) : Su = r},

F r
USC(X) = {u ∈ FUSC(X) : r = max{u(x) : x ∈ X}},

F
′r
USCG(X) = {u ∈ FUSCG(X) : Su = r},

F r
USCG(X) = {u ∈ FUSCG(X) : r = max{u(x) : x ∈ X}},

F
′r
USCB(X) = {u ∈ FUSCB(X) : Su = r},

F r
USCB(X) = {u ∈ FUSCB(X) : r = max{u(x) : x ∈ X}}.

Let r ∈ [0, 1]. We can see that F r
USC(X) ⊆ F

′r
USC(X). Clearly, F

′0
USC(X) =

F 0
USC(X) = F 0

USCG(X) = F 0
USCB(X) = {∅F (X)}.

Proposition 5.3. Let r ∈ [0, 1]. Then
(i) F r

USCG(X) = F
′r
USCG(X), F r

USCB(X) = F
′r
USCB(X),

(ii) F
′r
USC(X) is a closed subset of (FUSC(X), Hend),

(iii) F r
USCG(X) is a closed subset of (FUSCG(X), Hend), and

(iv) F r
USCB(X) is a closed subset of (FUSCB(X), Hend).

Proof. From Proposition 5.2 (ii) and the fact that FUSCB(X) ⊆ FUSCG(X),
we have that F r

USCG(X) = F
′r
USCG(X), F r

USCB(X) = F
′r
USCB(X). So (i) is

true.
By Proposition 5.1, (ii) is true.
From Proposition 5.1, F

′r
USCG(X) is a closed subset of (FUSCG(X), Hend),

and F
′r
USCB(X) is a closed subset of (FUSCB(X), Hend). Then by (i), (iii) and

(iv) are true.

Lemma 5.4. Let r ∈ [0, 1] and let U be a subset of F r
USCG(X). Then the

following (i-1) is equivalent to (i-2), and (ii-1) is equivalent to (ii-2).
(i-1) U is relatively compact in (FUSCG(X), Hend).
(i-2) U is relatively compact in (F r

USCG(X), Hend).
(ii-1) U is closed in (FUSCG(X), Hend).
(ii-2) U is closed in (F r

USCG(X), Hend).
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Proof. Clause (iii) of Proposition 5.3 says that F r
USCG(X) is a closed subset

of (FUSCG(X), Hend). From this we obtain that (i-1)⇔(i-2), and (ii-1)⇔(ii-2).

In this paper, we suppose that (r, r] = ∅ for r ∈ R.

Lemma 5.5. Let r ∈ [0, 1] and let U be a subset of F r
USCG(X). Then the

following (i-1) is equivalent to (i-2), (ii-1) is equivalent to (ii-2), and (iii-1)
is equivalent to (iii-2).
(i-1) U(α) is relatively compact in (X, d) for each α ∈ (0, 1].
(i-2) U(α) is relatively compact in (X, d) for each α ∈ (0, r].
(ii-1) U(α) is totally bounded in (X, d) for each α ∈ (0, 1].
(ii-2) U(α) is totally bounded in (X, d) for each α ∈ (0, r].
(iii-1) U(α) is compact in (X, d) for each α ∈ (0, 1].
(iii-2) U(α) is compact in (X, d) for each α ∈ (0, r].

Proof. Observe that if α ∈ (r, 1] then U(α) = ∅. From this we obtain that
(i-1)⇔(i-2), (ii-1)⇔(ii-2), and (iii-1)⇔(iii-2).

Corollary 5.6. Let r ∈ [0, 1] and let U be a subset of F r
USCG(X). Then the

following properties are equivalent.
(i) U is relatively compact in (FUSCG(X), Hend).
(ii) U is relatively compact in (F r

USCG(X), Hend).
(iii) U(α) is relatively compact in (X, d) for each α ∈ (0, 1].
(iv) U(α) is relatively compact in (X, d) for each α ∈ (0, r].

Proof. By Lemma 5.4, (i)⇔(ii). From this and Theorem 4.11, we obtain
that (ii)⇔(iii). By Lemma 5.5, (iii)⇔(iv), and the proof is complete.

Corollary 5.7. Let r ∈ [0, 1] and let U be a subset of F r
USCG(X). Then the

following properties are equivalent.
(i) U is totally bounded in (FUSCG(X), Hend).
(ii) U is totally bounded in (F r

USCG(X), Hend).
(iii) U(α) is totally bounded in (X, d) for each α ∈ (0, 1].
(iv) U(α) is totally bounded in (X, d) for each α ∈ (0, r].

Proof. Clearly (i)⇔(ii). From this and Theorem 4.12, we obtain that (ii)⇔(iii).
By Lemma 5.5, (iii)⇔(iv), and the proof is complete.
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Corollary 5.8. Let r ∈ [0, 1] and let U be a subset of F r
USCG(X). Then the

following properties are equivalent.
(i) U is compact in (FUSCG(X), Hend)
(ii) U is compact in (F r

USCG(X), Hend).
(iii) U(α) is relatively compact in (X, d) for each α ∈ (0, 1] and U is closed
in (FUSCG(X), Hend);
(iv) U(α) is compact in (X, d) for each α ∈ (0, 1] and U is closed in (FUSCG(X), Hend).
(v) U(α) is relatively compact in (X, d) for each α ∈ (0, r] and U is closed
in (F r

USCG(X), Hend).
(vi) U(α) is compact in (X, d) for each α ∈ (0, r] and U is closed in (F r

USCG(X), Hend).

Proof. Clearly (i)⇔(ii). From this and Theorem 4.13, we obtain that (ii)⇔(iii)⇔(iv).
By Lemma 5.4, U is closed in (FUSCG(X), Hend) if and only if U is closed

in (F r
USCG(X), Hend). By Lemma 5.5, U(α) is relatively compact in (X, d)

for each α ∈ (0, 1] if and only if U(α) is relatively compact in (X, d) for each
α ∈ (0, r]. So (iii)⇔(v).

Similarly, from Lemmas 5.4 and 5.5, we have that (iv)⇔(vi).
So (i)⇔(ii)⇔(iii)⇔(iv)⇔(v)⇔(vi).

Remark 5.9. From Corollary 5.8, Lemmas 5.4 and 5.5, the following prop-
erties are equivalent.
(i) U is compact in (FUSCG(X), Hend).
(ii) U is compact in (F r

USCG(X), Hend).
(iii) At least one of (i-1),(i-2), (iii-1) and (iii-2) in Lemma 5.5 holds, and at
least one of (ii-1) and (ii-2) in Lemma 5.4 holds.
(iv) All of (i-1),(i-2), (iii-1) and (iii-2) in Lemma 5.5 hold, and all of (ii-1)
and (ii-2) in Lemma 5.4 hold.

6. An application on relationship between Hend metric and Γ-convergence

As an application of the characterizations of relative compactness, total
boundedness and compactness given in Section 4, we discuss the relationship
between Hend metric and Γ-convergence on fuzzy sets.

Proposition 6.1. Let S be a nonempty subset of FUSC(X). Let u be a fuzzy
set in S, and let {un} be a fuzzy set sequence in S. Then the following prop-
erties are equivalent.
(i) Hend(un, u)→ 0.
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(ii) lim(Γ)
n→∞ un = u, and {un, n = 1, 2, . . .} is a relatively compact set in

(FUSC(X), Hend).
(iii) lim(Γ)

n→∞ un = u, and {un, n = 1, 2, . . .} is a relatively compact set in
(S,Hend).
(iv) lim(Γ)

n→∞ un = u, and {un, n = 1, 2, . . .} ∪ {u} is a compact set in
(S,Hend).
(v) lim(Γ)

n→∞ un = u, and {un, n = 1, 2, . . .} ∪ {u} is a compact set in
(FUSC(X), Hend).

Proof. To show (i)⇒(v). Assume that (i) is true. By Theorem 2.3 and
Remark 2.4, lim(Γ)

n→∞ un = u. Clearly {un, n = 1, 2, . . .} ∪ {u} is a compact
set in (FUSC(X), Hend). So (v) is true.

It can be seen that {un, n = 1, 2, . . .}∪{u} is a compact set in (FUSC(X), Hend)
if and only if {un, n = 1, 2, . . .} ∪ {u} is a compact set in (S,Hend). So
(v)⇔(iv).

If {un, n = 1, 2, . . .} ∪ {u} is a compact set in (S,Hend), then {un, n =
1, 2, . . .} is relatively compact in (S,Hend) because {un, n = 1, 2, . . .} is a
subset of {un, n = 1, 2, . . .} ∪ {u}. So (iv)⇒(iii).

Clearly if {un, n = 1, 2, . . .} is a relatively compact set in (S,Hend),
then {un, n = 1, 2, . . .} is a relatively compact set in (FUSC(X), Hend). So
(iii)⇒(ii).

To show (ii)⇒(i), we proceed by contradiction. Assume that (ii) is true.
If (i) is not true; that is, Hend(un, u) 6→ 0. Then there is an ε > 0 and a

subsequence {v(1)
n } of {un} that

Hend(v(1)
n , u) ≥ ε for all n = 1, 2, . . . . (15)

Since {un, n = 1, 2, . . .} is relatively compact in (FUSC(X), Hend), there is a

subsequence {v(2)
n } of {v(1)

n } and v ∈ FUSC(X) such that Hend(v
(2)
n , v) → 0.

Hence by Theorem 2.3 and Remark 2.4, lim(Γ)
n→∞ v

(2)
n = v. Since lim(Γ)

n→∞ un =

u, then by Remark 2.5, u = v. So Hend(v
(2)
n , u)→ 0, which contradicts (15).

Since we have shown (i)⇒(v), (v)⇔(iv), (iv)⇒(iii), (iii)⇒(ii) and (ii)⇒(i),
the proof is complete.

We can also show this theorem as follows. First we show that (i)⇔(iii)
⇔(iv) by verifying that (i)⇒(iv)⇒(iii)⇒(i) (The proof of (i)⇒(iv) is similar
to that of (i)⇒(v). The proof of (iii)⇒(i) is similar to that of (ii)⇒(i)). Then
put S = FUSC(X), we obtain that (i)⇔(ii) from (i)⇔(iii), and that (i)⇔(v)
from (i)⇔(iv). So we have that (i), (ii), (iii), (iv) and (v) are equivalent to
each other.
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Proposition 6.2. Let u be a fuzzy set in FUSCG(X), and let {un} be a fuzzy
set sequence in FUSCG(X). Then the following properties are equivalent.
(i) Hend(un, u)→ 0.
(ii) lim(Γ)

n→∞ un = u, and for each α ∈ (0, 1],
⋃+∞
n=1[un]α is relatively compact

in (X, d).
(iii) lim(Γ)

n→∞ un = u, and for each α ∈ (0, 1],
⋃+∞
n=1[un]α ∪ [u]α is compact in

(X, d).
(iv) lim(Γ)

n→∞ un = u, {un, n = 1, 2, . . .} ∪ {u} is closed in (FUSCG(X), Hend),
and for each α ∈ (0, 1],

⋃+∞
n=1[un]α ∪ [u]α is compact in (X, d).

Proof. The desired result follows from Proposition 6.1, Theorem 4.11 and
Theorem 4.13. The proof is routine.

Put S = FUSCG(X) in Proposition 6.1. Then we obtain that the following
conditions (a), (b) and (c) are equivalent.
(a) Hend(un, u)→ 0.
(b) lim(Γ)

n→∞ un = u, and {un, n = 1, 2, . . .} is a relatively compact set in
(FUSCG(X), Hend).
(c) lim(Γ)

n→∞ un = u, and {un, n = 1, 2, . . .}∪{u} is a compact set in (FUSCG(X), Hend).
(a) is (i). By Theorem 4.11, (b)⇔(ii). By Theorem 4.13, (c)⇔(iv). We

can see that (iv)⇒(iii)⇒(ii). So from (a)⇔(b)⇔(c), we have that (i)⇔(ii)⇔
(iii)⇔(iv).

Proposition 6.3. Let D be a nonempty subset of C(X). Let A be a set in
D, and let {An} be a sequence of sets in D. Then the following properties
are equivalent.
(i) H(An, A)→ 0.
(ii) lim(K)

n→∞An = A, and {An, n = 1, 2, . . .} is a relatively compact set in
(C(X), H).
(iii) lim(K)

n→∞An = A, and {An, n = 1, 2, . . .} is a relatively compact set in
(D, H).
(iv) lim(K)

n→∞An = A, and {An, n = 1, 2, . . .} ∪ {A} is a compact set in
(D, H).
(v) lim(K)

n→∞An = A, and {An, n = 1, 2, . . .} ∪ {A} is a compact set in
(C(X), H).

Proof. The proof is similar to that of Proposition 6.1.
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Proposition 6.4. Let A be a set in K(X), and let {An} be a sequence of
sets in K(X). Then the following properties are equivalent.
(i) H(An, A)→ 0.
(ii) lim(K)

n→∞An = A, and
⋃+∞
n=1 An is a relatively compact set in (X, d).

(iii) lim(K)
n→∞An = A, and

⋃+∞
n=1An ∪ A is a compact set in (X, d).

(iv) lim(K)
n→∞An = A,

⋃+∞
n=1 An ∪A is a compact set in (X, d), and {An, n =

1, 2, . . .} ∪ {A} is a closed set in (K(X), H).

Proof. The desired result follows from Proposition 6.3 and Theorems 4.2
and 4.3. The proof is routine and similar to that of Proposition 6.2.

Put D = K(X) in Proposition 6.3. Then we obtain that the following
conditions (a), (b) and (c) are equivalent.
(a) H(An, A)→ 0.
(b) lim(K)

n→∞An = A, and {An, n = 1, 2, . . .} is a relatively compact set in
(K(X), H).
(c) lim(K)

n→∞An = A, and {An, n = 1, 2, . . .} ∪ {A} is a compact set in
(K(X), H).

(a) is (i). By Theorem 4.2, (b)⇔(ii). By Theorem 4.3, (c)⇔(iv). We can
see that (iv)⇒(iii) ⇒(ii). So from (a)⇔(b)⇔(c), we have that (i)⇔(ii)⇔
(iii)⇔(iv).

Remark 6.5. Let u ∈ FUSCG(X) and {un} be a fuzzy set sequence in
FUSC(X). Let α ∈ (0, 1]. Since [u]α is compact in X, we have that the condi-
tions (a)

⋃+∞
n=1[un]α is relatively compact in (X, d), and (b)

⋃+∞
n=1[un]α ∪ [u]α

is relatively compact in (X, d), are equivalent.
So “

⋃+∞
n=1[un]α is relatively compact in (X, d)” can be replaced by “

⋃+∞
n=1[un]α∪

[u]α is relatively compact in (X, d)” in clause (ii) of Proposition 6.2.
Similar replacement can be made in Propositions 6.1, 6.3 and 6.4.

Propositions 6.1, 6.2, 6.3 and 6.4 can be shown in different ways. Below
we give some other proofs.

Proposition 6.3 implies Proposition 6.1.
Let S be a nonempty subset of FUSC(X). Let u be a fuzzy set in S, and

let {un} be a fuzzy set sequence in S.
Put A = endu, and for n = 1, 2, . . ., put An = endun in Proposition 6.3.
Put D = {endu : u ∈ FUSC(X)} in Proposition 6.3. Then from (i)⇔(iii)

in Proposition 6.3, we obtain that (i)⇔(ii) in Proposition 6.1.
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Put D = {endu : u ∈ S} in Proposition 6.3. Then from (i)⇔(iii) in
Proposition 6.3, we obtain that (i)⇔(iii) in Proposition 6.1.

Similarly, we can show that (i)⇔(iv) and (i)⇔(v) in Proposition 6.1. So
Proposition 6.3 implies Proposition 6.1.

Proposition 6.3, Theorem 4.11 and Theorem 4.13 imply Proposition 6.2.
Let u be a fuzzy set in FUSCG(X), and let {un} be a fuzzy set sequence

in FUSCG(X).
Put A = endu, and for n = 1, 2, . . ., put An = endun in Proposition 6.3.
Put D = {endu : u ∈ FUSCG(X)} in Proposition 6.3. Then from (i)⇔(iii)

in Proposition 6.3 and Theorem 4.11, we obtain that (i)⇔(ii) in Proposition
6.2.

Similarly from (i)⇔(iv) in Proposition 6.3 and Theorem 4.13, we obtain
that (i)⇔(iv) in Proposition 6.2. Since (iv)⇒(iii) ⇒(ii) in Proposition 6.2,
it follows that (i)⇔(ii)⇔(iii)⇔(iv) in Proposition 6.2. So Proposition 6.3,
Theorem 4.11 and Theorem 4.13 imply Proposition 6.2.

Proposition 6.1 implies Propositions 6.3 and 6.4.
Proposition 6.2 implies Proposition 6.4.

Proposition 6.6. (i) Let A ∈ C(X) and {An} a sequence in C(X). Then
Hend(χAn , χA)→ 0 if and only if H(An, A)→ 0.
(ii) Let A ∈ P (X) and {An} a sequence in P (X). Then lim(Γ)

n→∞ χAn = χA
if and only if lim(K)

n→∞An = A.
(iii) Let D be a subset of C(X) and B a subset of D. Then B is totally bounded
(respectively, relatively compact, compact, closed) in (D, H) if and only if
BF (X) is totally bounded(respectively, relatively compact, compact, closed) in
(DF (X), Hend).

Proof. (i) and (iii) follow immediately from (12). (ii) follows from the defi-
nition of Kuratowski convergence and Γ-convergence.

Let D be a nonempty subset of C(X). Let A be a set in C(X), and let
{An} be a sequence of sets in D.

Let S = C(X)F (X) in Proposition 6.1. Then from (i)⇔(iii) in Proposition
6.1, we have that:
(c-1) Hend(χAn , χA) → 0 if and only if lim(Γ)

n→∞ χAn = χA, and {χAn , n =
1, 2, . . .} is a relatively compact set in (C(X)F (X), Hend).

By Proposition 6.6, (c-1) means that (i)⇔(ii) in Proposition 6.3.
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Let S = DF (X) in Proposition 6.1. Then from (i)⇔(iii) in Proposition
6.1, we have that:
(c-2) Hend(χAn , χA) → 0 if and only if lim(Γ)

n→∞ χAn = χA, and {χAn , n =
1, 2, . . .} is a relatively compact set in (DF (X), Hend).

By Proposition 6.6, (c-2) means that (i)⇔(iii) in Proposition 6.3.
Similarly, by using Proposition 6.6, we can show that (i)⇔(iv) in Propo-

sition 6.1 implies that (i)⇔(iv) and (i)⇔(v) in Proposition 6.3.
By clauses (i) and (ii) of Proposition 6.6 and clause (iii) of Proposition

4.22, we can see that Proposition 6.2 implies Proposition 6.4.
By using level characterizations of Hend and Γ-convergence on fuzzy sets,

it is easy to show that Proposition 6.4 also implies Proposition 6.2.

7. Conclusion

In this paper, we present the characterizations of total boundedness, rela-
tive compactness and compactness in (FUSCG(X), Hend). Here X is a general
metric space. Based on this, we also give the characterizations of total bound-
edness, relative compactness and compactness in (F r

USCG(X), Hend), r ∈
[0, 1]. (F r

USCG(X), Hend), r ∈ [0, 1], are metric subspaces of (FUSCG(X), Hend).
The conclusions in this paper significantly improve the corresponding

conclusions given in our previous paper [18]. Therein we give the charac-
terizations of total boundedness, relative compactness and compactness in
(FUSCG(Rm), Hend). Rm is a special type of metric space.

We discuss the relationship between Hend metric and Γ-convergence as an
application of the characterizations of relative compactness, total bounded-
ness and compactness given in this paper.

The results in this paper have potential applications in the research of
fuzzy sets involved the endograph metric and the Γ-convergence.
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