Upper bounds for Z_1-eigenvalues of generalized Hilbert tensors *

Juan Meng†, Yisheng Song‡

Abstract

In this paper, we introduce the concept of Z_1-eigenvalue to infinite dimensional generalized Hilbert tensors (hypermatrix) $H_\lambda^\infty = (H_{i_1 i_2 \cdots i_m})$,

$$H_{i_1 i_2 \cdots i_m} = \frac{1}{i_1 + i_2 + \cdots + i_m + \lambda}, \lambda \in \mathbb{R} \setminus \mathbb{Z}^-; i_1, i_2, \cdots, i_m = 0, 1, 2, \cdots, n, \cdots,$$

and proved that its Z_1-spectral radius is not larger than π for $\lambda > \frac{1}{2}$, and is at most $\frac{\pi}{\sin \frac{\pi}{n}}$ for $\frac{1}{2} \geq \lambda > 0$. Besides, the upper bound of Z_1-spectral radius of an mth-order n-dimensional generalized Hilbert tensor H_λ^n is obtained also, and such a bound only depends on n and λ.

Key words: Infinite-dimensional generalized Hilbert tensor, Z_1-eigenvalue, Spectral radius, Hilbert inequalities.

AMS subject classifications (2010): 47H15, 47H12, 34B10, 47A52, 47J10, 47H09, 15A48, 47H07

1 Introduction

A generalized Hilbert matrix has the form [13]:

$$H_\lambda^\infty = \left(\frac{1}{i + j + \lambda} \right)_{i, j \in \mathbb{Z}^+}$$

(1.1)

where \mathbb{Z}^+ (\mathbb{Z}^-) is the set of all non-negative (non-positive) integers and $\lambda \in \mathbb{R} \setminus \mathbb{Z}^-$. Denote such a Hilbert matrix with $i, j \in I_n = \{0, 1, 2, \cdots, n\}$ by H_λ^n. When $\lambda = 1$, such a matrix is called Hilbert matrix, which was introduced by Hilbert [12]. Choi [6] and Ingham [14] proved that Hilbert matrix H_1^∞ is a bounded linear operator (but not compact operator).

*This work was supported by the National Natural Science Foundation of P.R. China (Grant No. 11571095, 11601134, 11701154).

†School of Mathematics and Information Science, Henan Normal University, XinXiang HeNan, P.R. China, 453007. Email: 1015791785@qq.com

‡Corresponding author. School of Mathematics and Information Science and Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, XinXiang HeNan, P.R. China, 453007. Email: songyisheng@htu.cn.
from Hilbert space l^2 into itself. Magnus [18] and Kato [15] studied the spectral properties of H_1^∞. Frazer [7] and Taussky [29] discussed some nice properties of n-dimensional Hilbert matrix H^n_1. Rosenblum [23] showed that for a real $\lambda < 1$, H_λ^∞ defines a bounded operator on l^p for $2 < p < \infty$ and that $\pi \sec \pi x$ is an eigenvalue of H_λ^∞ for $|\Re u| < \frac{1}{2} - \frac{1}{p}$. For each non-integer complex number λ, Aleman, Montes-Rodriguez, Sarafianou [1] showed that H_λ^∞ defines a bounded linear operator on the Hardy spaces $H^p (1 < p < \infty)$.

As a natural extension of a generalized Hilbert matrix, the generalized Hilbert tensor (hypermatrix) was introduced by Mei and Song [24]. For each $\lambda \in \mathbb{R} \setminus \mathbb{Z}^-$, the entries of an mth-order infinite dimensional generalized Hilbert tensor $H_\lambda^\infty = (H_{i_1i_2\cdots i_m})$ are defined by

$$H_{i_1i_2\cdots i_m} = \frac{1}{i_1 + i_2 + \cdots + i_m + \lambda}, \quad i_1, i_2, \cdots, i_m = 0, 1, 2, \cdots, n, \cdots. \quad (1.2)$$

They showed H_λ^∞ defines a bounded and positively $(m - 1)$-homogeneous operator from l^1 into $l^p (1 < p < \infty)$. Song and Qi [25] studied the operator properties of Hilbert tensors H_1^∞ and the spectral properties of H_λ^∞. Such a tensor, H_λ^∞ may be refered to as a Hankel tensor with $v = (1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots)$. The concept of Hankel tensor was introduced by Qi [22]. For more further research of Hankel tensors, see Qi [22], Chen and Qi [5], Xu [31]. Denote such an mth-order n-dimensional generalized Hilbert tensor by H_λ^∞.

For a real vector $x = (x_1, x_2, \cdots, x_n, x_{n+1}, \cdots) \in l^1$, $H_\lambda^\infty x^{m-1}$ is an infinite dimensional vector with its ith component defined by

$$(H_\lambda^\infty x^{m-1})_i = \sum_{i_1, i_2, \cdots, i_m = 0}^{\infty} \frac{x_{i_1} x_{i_2} \cdots x_{i_m}}{i_1 + i_2 + \cdots + i_m + \lambda}, \quad \lambda \in \mathbb{R} \setminus \mathbb{Z}^-; \quad i = 0, 1, 2, \cdots. \quad (1.3)$$

Accordingly, $H_\lambda^\infty x^m$ is given by

$$H_\lambda^\infty x^m = \sum_{i_1, i_2, \cdots, i_m = 0}^{\infty} \frac{x_{i_1} x_{i_2} \cdots x_{i_m}}{i_1 + i_2 + \cdots + i_m + \lambda}, \quad \lambda \in \mathbb{R} \setminus \mathbb{Z}^- \quad (1.4)$$

Mei and Song [24] proved that $H_\lambda^\infty x^m < \infty$ and $H_\lambda^\infty x^{m-1} \in l^p (1 < p < \infty)$ for all real vector $x \in l^1$.

In this paper, we will introduce the concept of Z_1-eigenvalue μ for an mth-order infinite dimensional generalized Hilbert tensor H_λ^∞ and will study some upper bounds of Z_1-spectral radius for infinite dimensional generalized Hilbert tensor H_λ^∞ and n-dimensional generalized Hilbert tensor H_λ^n.

In Section 2, we will give some Lemmas and basic conclusions, and introduce the concept of Z_1-eigenvalue. In Section 3, with the help of the Hilbert type inequalities, the upper bound of Z_1-spectral radius of H_λ^∞ with $\lambda > 0$ is at most π when $\lambda > 1$, and is not larger than $\frac{\pi}{\sqrt{\lambda n}}$ when $0 < \lambda \leq \frac{1}{2}$. Furthermore, for each Z_1-eigenvalue μ of H_λ^∞, $|\mu|$ is smaller than or equal to $C(n, \lambda)$, where $C(n, \lambda)$ only depends on the structured coefficient λ of generalized Hilbert tensor and the dimensionality n of European space.
2 Preliminaries and Basic Results

For $0 < p < \infty$, l^p is a space consisting of all real number sequences $x = (x_i)_{i=1}^{+\infty}$ satisfying $\sum_{i=1}^{+\infty} |x_i|^p < \infty$. If $p \geq 1$, then a norm on l^p is defined by

$$\|x\|_p = \left(\sum_{i=1}^{+\infty} |x_i|^p\right)^{\frac{1}{p}}.$$

It is well known that l^2 is a Hilbert space with the inner product

$$\langle x, y \rangle = \sum_{i=0}^{+\infty} x_i y_i.$$

Clearly, $\|x\|_2 = \sqrt{\langle x, x \rangle}$.

For $p \geq 1$, a norm \mathbb{R}^n can be defined by

$$\|x\|_p = \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}.$$

It is well known that

$$\|x\|_2 \leq \|x\|_1 \leq \sqrt{n} \|x\|_2. \quad (2.1)$$

The following Hilbert type inequalities were proved by Frazer [7] on \mathbb{R}^n and Ingham [14] on l^2, respectively.

Lemma 2.1. (Frazer [7]) Let $x = (x_1, x_2, \cdots, x_n)^T \in \mathbb{R}^n$. Then

$$\sum_{i=0}^{n} \sum_{j=0}^{n} \frac{|x_i| |x_j|}{i+j+1} \leq \left(n \sin \frac{\pi}{n}\right) \sum_{k=0}^{n} x_k^2 = \|x\|_2^2 \sin \frac{\pi}{n}, \quad (2.2)$$

Lemma 2.2. (Ingham [14]) Let $x = (x_1, x_2, \cdots, x_n, \cdots)^T \in l^2$ and $a > 0$. Then

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \frac{|x_i| |x_j|}{i+j+a} \leq M(a) \sum_{k=0}^{\infty} x_k^2 = M(a) \|x\|_2^2, \quad (2.3)$$

where

$$M(a) = \begin{cases} \frac{\pi}{8n \pi^2}, & 0 < a \leq \frac{1}{2}, \\ \pi, & a > \frac{1}{2}. \end{cases}$$

An m-order n-dimensional tensor (hypermatrix) $\mathbf{A} = (a_{i_1 \cdots i_m})$ is a multi-array of real entries $a_{i_1 \cdots i_m} \in \mathbb{R}$, where $i_j \in I_n = \{1, 2, \cdots, n\}$ for $j \in [m] = \{1, 2, \cdots, m\}$. We use $T_{m,n}$ to denote the set of all real mth-order n-dimensional tensors. Then $\mathbf{A} \in T_{m,n}$ is called a symmetric tensor if the entries $a_{i_1 \cdots i_m}$ are invariant under any permutation of their indices. $\mathbf{A} \in T_{m,n}$ is called nonnegative (positive) if $a_{i_1 i_2 \cdots i_m} \geq 0 (a_{i_1 i_2 \cdots i_m} > 0)$ for all i_1, i_2, \cdots, i_m.

Definition 2.1. (Chang and Zhang [2]) Let $A \in T_{m,n}$. A number $\mu \in \mathbb{R}$ is called Z_1-eigenvalue of A if there is a real vector x such that

$$\begin{align*}
Ax^{m-1} &= \mu x \\
\|x\|_1 &= 1
\end{align*}$$

(2.4)

and call such a vector x an Z_1-eigenvector associated with μ.

For the concepts of eigenvalues of higher order tensors, Qi [19, 20] first used and introduced them for symmetric tensors, and Lim [17] independently introduced this notion but restricted x to be a real vector and λ to be a real number. Subsequently, the spectral properties of nonnegative matrices had been generalized to n-dimensional nonnegative tensors under various conditions by Chang et al. [3, 4], He and Huang [9], He [10], He et al. [11], Li et al. [16], Qi [21], Song and Qi [26, 27], Wang et al. [30], Yang and Yang [32, 33] and references therein. The notion of Z_1-eigenvalue was introduced by Chang and Zhang [2] for higher Markov chains. Now we introduce it to infinite dimensional generalized Hilbert tensors.

Let H_1 be an mth-order infinite dimensional generalized Hilbert tensor. A real number μ is called a Z_1-eigenvalue of H_1 if there exists a nonzero vector $x \in \ell^p$ satisfying

$$T_\infty x = \|x\|_1^{2-m}H_1^{\infty}x^{m-1} = \mu x.$$

(2.5)

where $\theta = (0,0,\cdots,0,\cdots)$. Mei and Song [24] first used the concept of the operator T_∞ induced by a generalized Hilbert tensor H_1^{∞} and showed T_∞ is a bounded and positively homogeneous operator from ℓ^1 into ℓ^p ($1 < p < \infty$). Then T_∞ is referred to as a bounded and positively homogeneous operator from ℓ^2 into ℓ^2. So, the concept of Z_1-eigenvalue may be introduced to the infinite dimensional Hilbert tensor H_1^{∞}.

Definition 2.2. Let H_1^{∞} be an mth-order infinite dimensional generalized Hilbert tensor. A real number μ is called a Z_1-eigenvalue of H_1^{∞} if there exists a nonzero vector $x \in \ell^2$ satisfying

$$T_\infty x = \|x\|_1^{2-m}H_1^{\infty}x^{m-1} = \mu x.$$

(2.6)

Such a vector x is called an Z_1-eigenvector associated with μ.

3 Main Results

Theorem 3.1. Let H_1^{n} be an mth-order n-dimensional generalized Hilbert tensor. Then

$$|\mu| \leq C(n, \lambda) \text{ for all } Z_1\text{-eigenvalue } \mu \text{ of } H_1^{n},$$

where $[\lambda]$ is the largest integer not exceeding λ and

$$C(n, \lambda) = \begin{cases}
 n\sin \frac{\pi}{n}, & \lambda \geq 1; \\
 \frac{n}{\lambda}, & 1 > \lambda > 0; \\
 \min\{1, \lambda+1\} - \lambda, & -mn < \lambda < 0; \\
 \frac{n}{-mn-\lambda}, & \lambda < -mn.
\end{cases}$$
Proof. For $\lambda \geq 1$, it follows from Lemma 2.1 that for all nonzero vector $x \in \mathbb{R}^n$,
\[
\|H^\lambda x^n\| = \left| \sum_{i_1, i_2, \ldots, i_m = 0}^{n} \frac{x_{i_1}x_{i_2} \cdots x_{i_m}}{i_1 + i_2 + \cdots + i_m + \lambda} \right|
\leq \sum_{i_1, i_2, \ldots, i_m = 0}^{n} \frac{|x_{i_1}||x_{i_2}| \cdots |x_{i_m}|}{i_1 + i_2 + \lambda}
= \left(\sum_{i_1 = 0}^{n} \sum_{i_2 = 0}^{n} \frac{|x_{i_1}|}{i_1 + i_2 + \lambda} \right) \sum_{i_3, i_4, \ldots, i_m = 0}^{n} |x_{i_3}| |x_{i_4}| \cdots |x_{i_m}|
\leq \left(\sum_{i_1 = 0}^{n} \sum_{i_2 = 0}^{n} \frac{|x_{i_1}|}{i_1 + i_2 + 1} \right) \sum_{i_3, i_4, \ldots, i_m = 0}^{n} |x_{i_3}| |x_{i_4}| \cdots |x_{i_m}|
\leq \left(\|x\|_2^2 n \sin \frac{\pi}{n} \right)^{m-2} \left(\sum_{i_1 = 0}^{n} |x_i| \right)^{m-2}
= \|x\|_2^2 \|x\|_1^{m-2} n \sin \frac{\pi}{n}.
\]
That is,
\[
\|H^\lambda x^n\| \leq \|x\|_2^2 \|x\|_1^{m-2} n \sin \frac{\pi}{n}. \tag{3.1}
\]
Since μ is a Z_1-eigenvalue of H^λ, then there exists a nonzero vector x such that
\[
H^\lambda x^{m-1} = \mu x \text{ and } \|x\|_1 = 1. \tag{3.2}
\]
Thus, we have,
\[
|\mu x^\top x| = |x^\top (H^\lambda x^{m-1})| = \|H^\lambda x^n\| \leq \|x\|_2^2 \|x\|_1^{m-2} n \sin \frac{\pi}{n},
\]
and then,
\[
|\mu| \|x\|_2^2 \leq \|x\|_2^2 \|x\|_1^{m-2} n \sin \frac{\pi}{n}.
\]
As a result,
\[
|\mu| \leq n \sin \frac{\pi}{n}. \tag{3.3}
\]
For all $\lambda \in \mathbb{R} \setminus \mathbb{Z}^-$ with $\lambda < 1$, it is obvious that for $1 > \lambda > 0$,
\[
\min_{i_1, \ldots, i_m \in \mathbb{Z}^n} |i_1 + i_2 + \cdots + i_m + \lambda| = \lambda.
\]
For $-mn < \lambda < 0$, there exist some positive integers i'_1, i'_2, \ldots, i'_m and $i''_1, i''_2, \ldots, i''_m$ such that
\[
i'_1 + i'_2 + \cdots + i'_m = -[\lambda] \text{ and } i''_1 + i''_2 + \cdots + i''_m = -[\lambda] - 1,
\]
and then,
and hence,
\[\min_{i_1, \ldots, i_m \in \mathbb{I}_n} |i_1 + i_2 + \cdots + i_m + \lambda| = \min \left\{ \lambda - \lfloor \lambda \rfloor, \lambda - (-\lfloor \lambda \rfloor - 1) \right\}. \]

For \(\lambda < -mn \), we also have,
\[\min_{i_1, \ldots, i_m \in \mathbb{I}_n} |i_1 + i_2 + \cdots + i_m + \lambda| = |mn + \lambda| = -mn - \lambda. \]

Therefore, we have for \(\lambda \in \mathbb{R} \setminus \mathbb{Z}^- \) with \(\lambda < 1 \),
\[\frac{1}{|i_1 + i_2 + \cdots + i_m + \lambda|} \leq N(\lambda) = \begin{cases} \frac{1}{\lambda}, & 1 > \lambda > 0; \\ \frac{1}{\min(\lambda - \lfloor \lambda \rfloor, 1 + [\lambda] - \lambda)}, & -mn < \lambda < 0; \\ \frac{1}{-mn - \lambda}, & \lambda < -mn \end{cases}. \]

Then, for all nonzero vector \(x \in \mathbb{R}^n \), we have
\[|\mathcal{H}_x^m x^m| = \left| \sum_{i_1, i_2, \ldots, i_m = 0}^{n} \frac{x_{i_1} x_{i_2} \cdots x_{i_m}}{i_1 + i_2 + \cdots + i_m + \lambda} \right| \leq \sum_{i_1, i_2, \ldots, i_m = 0}^{n} \frac{|x_{i_1} x_{i_2} \cdots x_{i_m}|}{|i_1 + i_2 + \cdots + i_m + \lambda|} \leq N(\lambda) \sum_{i_1, i_2, \ldots, i_m = 0}^{n} |x_{i_1}||x_{i_2}| \cdots |x_{i_m}| = N(\lambda) (\sum_{i = 0}^{n} |x_i|)^m = N(\lambda) \|x\|_1^n. \]

For each \(Z_1 \)-eigenvalue \(\mu \) of \(\mathcal{H}_\lambda^m \) with eigenvector \(x \), from (3.2) and \(\|x\|_1 \leq \sqrt{n} \|x\|_2 \), it follows that
\[|\mu| \left(\frac{1}{n} \|x\|_1^2 \right) \leq |\mu| \|x\|_2^2 = |\mathcal{H}_x^m x^m| \leq N(\lambda) \|x\|_1^m, \]
and hence,
\[|\mu| \leq nN(\lambda). \]

This completes the proof. \(\square \)

When \(\lambda = 1 \), the following conclusion of Hilbert tensor is easily obtained. Also see Song and Qi [25] for the conclusions about H-eigenvalue and Z-eigenvalue of such a tensor.

Corollary 3.2. Let \(\mathcal{H} \) be an \(m \)-th order \(n \)-dimensional Hilbert tensor. Then for all \(Z_1 \)-eigenvalue \(\mu \) of \(\mathcal{H} \),
\[|\mu| \leq n \sin \frac{\pi}{n}. \]

Theorem 3.3. Let \(\mathcal{H}_\infty^m \) be an \(m \)-th order infinite dimensional generalized Hilbert tensor. Assume \(\lambda > 0 \), then for \(Z_1 \)-eigenvalue \(\mu \) of \(\mathcal{H}_\infty^m \),
\[|\mu| \leq M(\lambda) = \begin{cases} \frac{x}{\sin \lambda \pi}, & 0 < \lambda \leq \frac{1}{2}; \\ \pi, & \lambda > \frac{1}{2}. \end{cases} \]
Proof. For $x \in l^2$, it follows from Lemma 2.2 that

$$|\langle x, H^\infty_{\lambda} x^{m-1} \rangle| = |H^\infty_{\lambda} x^m| = \left| \sum_{i_1, i_2, \ldots, i_m = 0}^{+\infty} \frac{x_{i_1} x_{i_2} \cdots x_{i_m}}{i_1 + i_2 + \cdots + i_m + \lambda} \right| \leq \sum_{i_1, \ldots, i_m = 0}^{+\infty} \frac{|x_{i_1}||x_{i_2}| \cdots |x_{i_m}|}{i_1 + i_2 + \lambda}$$

$$= \left(\sum_{i_1 = 0}^{+\infty} \frac{|x_{i_1}|}{i_1 + \lambda} \right) \left(\sum_{i_2 = 0}^{+\infty} \frac{|x_{i_2}|}{i_2 + \lambda} \right) \cdots \left(\sum_{i_m = 0}^{+\infty} \frac{|x_{i_m}|}{i_m + \lambda} \right) \leq M(\lambda) \|x\|_1^2 \|x\|_1^{m-2},$$

and so,

$$|\langle x, T_\infty x \rangle| = |\langle x, \|x\|_1^{2-m} H^\infty_{\lambda} x^{m-1} \rangle| = \|x\|_1^{2-m} |H^\infty_{\lambda} x^m| \leq M(\lambda) \|x\|_1^2. \quad (3.4)$$

For each Z_1-eigenvalue μ of H^∞_{λ}, there exists a nonzero vector $x \in l^2$ such that

$$T_\infty x = \|x\|_1^{2-m} H^\infty_{\lambda} x^{m-1} = \mu x,$$

and so,

$$\mu \|x\|_1^2 = \mu \langle x, x \rangle = \langle x, \|x\|_1^{2-m} H^\infty_{\lambda} x^{m-1} \rangle = \|x\|_1^{2-m} |H^\infty_{\lambda} x^m|.$$

Therefore, we have

$$|\mu| \|x\|_1^2 = \|x\|_1^{2-m} |H^\infty_{\lambda} x^m| \leq M(\lambda) \|x\|_1^2,$$

and then,

$$|\mu| \leq M(\lambda).$$

This completes the proof. \qed

When $\lambda = 1$, the following conclusion of infinite dimensional Hilbert tensor is easily obtained.

Corollary 3.4. Let H^∞_{λ} be an mth-order infinite dimensional Hilbert tensor. Then for all Z_1-eigenvalue μ of H^∞_{λ},

$$|\mu| \leq \pi.$$

Remark 3.1.

(i) In Theorem 3.1, the upper bound of Z_1-eigenvalue of H^∞_{λ} are showed. However the upper bound may not be the best. Then which number is its best upper bounds?

(ii) In Theorem 3.3, the upper bound of Z_1-eigenvalue of H^∞_{λ} are showed for $\lambda > 0$, then for $\lambda < 0$ with $\lambda \in \mathbb{R} \setminus \mathbb{Z}^+$, it is unknown whether have similar conclusions or not. And it is not clear whether the upper bound may be attained or cannot be attained.
References

