• On Two Factors Affecting the Efficiency of MILP Models in Automated Cryptanalyses

    分类: 数学 >> 应用数学 提交时间: 2023-02-15

    摘要: In recent years, mixed integer linear programming (MILP, in short) gradually becomes a popular tool of automated cryptanalyses in symmetric ciphers, which can be used to search differential characteristics and linear approximations with high probability/correlation. A key problem in the MILP method is how to build a proper model that can be solved efficiently in the MILP solvers like Gurobi or Cplex. It is known that a MILP problem is NP-hard, and the numbers of variables and inequalities are two important measures of its scale and time complexity. Whilst the solution space and the variables in many MILP models built for symmetric cryptanalyses are fixed without introducing dummy variables, the cardinality, i.e., the number of inequalities, is a main factor that might affect the runtime of MILP models. We notice that the norm of a MILP model, i.e., the maximal absolute value of all coefficients in its inequalities, is also an important factor affecting its runtime. In this work we will illustrate the effects of two parameters cardinality and norm of inequalities on the runtime of Gurobi by a large number of cryptanalysis experiments. Here we choose the popular MILP solver Gurobi and view it a black box, construct a large number of MILP models with different cardinalities or norms by means of differential analyses and impossible differential analyses for some classic block ciphers with SPN structure, and observe their runtimes in Gurobi. As a result, our experiments show that although minimizing the number of inequalities and the norm of coefficients might not always minimize the runtime, it is still a better choice in most situations.

  • Dating the First Case of COVID-19 Epidemic from a Probabilistic Perspective

    分类: 数学 >> 应用数学 提交时间: 2021-09-22

    摘要: In the early days of the epidemic of coronavirus disease 2019 (COVID-19), due to insufficient knowledge of the pandemic, inadequate nucleic acid tests, lack of timely data reporting, etc., the origin time of the onset of COVID-19 is difficult to determine. Therefore, source tracing is crucial for infectious disease prevention and control. The purpose of this paper is to infer the origin time of pandemic of COVID-19 based on a data and model hybrid driven method. We model the testing positive rate to fit its actual trend, and use the least squares estimation to obtain the optimal model parameters. Further, the kernel density estimation is applied to infer the origin time of pandemic given the specific confidence probability. By selecting 12 representative regions in the United States for analysis, the dates of the first infected case with 50% confidence probability are mostly between August and October 2019, which are earlier than the officially announced date of the first confirmed case in the United States on January 20, 2020. The experimental results indicate that the COVID-19 pandemic in the United States starts to spread around September 2019 with a high confidence probability. In addition, the existing confirmed cases are also used in Wuhan City and Zhejiang Province in China to infer the origin time of COVID-19 and provide the confidence probability. The results show that the spread of COVID-19 pandemic in China is likely to begin in late December 2019.