Vacuum stability conditions of the general two-Higgs-doublet potential

Yisheng Song†

Abstract

In this paper, we present the novel analytical expressions for the bounded-from-below or the vacuum stability conditions of scalar potential for a general CP violating two-Higgs-doublet model by using the concepts of co-positivity and the gauge orbit spaces. More precisely, several analytical sufficient conditions and necessary conditions are established for the vacuum stability of the general 2HDM potential, respectively. We also give an equivalent condition of the vacuum stability of the general 2HDM potential in theory, and then, apply it to derive the analytical necessary conditions of the general 2HDM potential. Meanwhile, the semi-positive definiteness is proved for a class of 4th-order 2-dimensional complex tensor.

Keywords: Co-positivity, Complex tensors, CP violation, 2HDM

1 Introduction

In 1973, the first two-Higgs-doublet model (for short, 2HDM) is presented by Lee [1, 2]. Subsequently, Weinberg [3] proposed a general multi-Higgs potential model. Since then, the stability of the scalar Higgs potential is an important problem with the Standard Model (for short, SM) at high-energies. The bounded-from-below (for short, BFB) or the vacuum stability of SM is very noticeable in particle physics community. One of the simplest extensions of the SM Higgs sector is the 2HDM [1, 4]. It is well-known that the most general Higgs potential

*This work was supported by the National Natural Science Foundation of P.R. China (Grant No.12171064), by The team project of innovation leading talent in Chongqing (No.CQYC20210309536) and by the Foundation of Chongqing Normal University (20XLB009)

†Corresponding author. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331 P.R. China, Email: yisheng.song@cqnu.edu.cn
for a 2HDM with Higgs doublets Φ_1 and Φ_2 can be written [5–7]

$$V_{H}(\Phi_1, \Phi_2) = \mu_{11}\Phi_1^*\Phi_1 + \mu_{22}\Phi_2^*\Phi_2 - (\mu_{12}\Phi_1^*\Phi_2 + \mu_{12}^*\Phi_2^*\Phi_1)$$
$$+ \lambda_1(\Phi_1^*\Phi_1)^2 + \lambda_2(\Phi_2^*\Phi_2)^2$$
$$+ \lambda_3(\Phi_1^*\Phi_1)(\Phi_2^*\Phi_2) + \lambda_4(\Phi_1^*\Phi_2)(\Phi_2^*\Phi_1)$$
$$+ \frac{\lambda_5}{2}(\Phi_1^*\Phi_2)^2 + \frac{\lambda_5^*}{2}(\Phi_2^*\Phi_1)^2$$
$$+ (\Phi_1^*\Phi_1)(\lambda_6\Phi_1^*\Phi_2 + \lambda_6^*\Phi_2^*\Phi_1)$$
$$+ (\Phi_2^*\Phi_2)(\lambda_7\Phi_1^*\Phi_2 + \lambda_7^*\Phi_2^*\Phi_1),$$

(1)

where Φ^* is Hermitian conjugate of Φ. The parameters μ_{11}, μ_{22} and λ_i $(i = 1, 2, 3, 4)$ are real, μ_{12} and λ_i $(i = 5, 6, 7)$ are complex. If such a 2HDM has explicit CP conservation, then μ_{12} and λ_i $(i = 5, 6, 7)$ are real.

The Higgs potential of such a 2HDM (1) may be said [6,8]

$$V_{H}(\Phi_1, \Phi_2) = \sum_{a,b=1}^{2} \mu_{ab}\Phi_a^*\Phi_b + \sum_{i,j,k,l=1}^{2} t_{ijkl}(\Phi_i^*\Phi_j)(\Phi_k^*\Phi_l),$$

(2)

where, by definition,

$$t_{ijkl} = t_{klij}, \quad t_{ijkl} = t_{jilk}^*, \quad \mu_{ab} = \mu_{ba}^*.$$

(3)

The quartic part,

$$V_4(\Phi_1, \Phi_2) = \sum_{i,j,k,l=1}^{2} t_{ijkl}(\Phi_i^*\Phi_j)(\Phi_k^*\Phi_l),$$

(4)

gives a 4th-order 2-dimensional complex tensor $T = (t_{ijkl})$:

$$t_{1111} = \lambda_1, \ t_{2222} = \lambda_2,$$
$$t_{1122} = t_{2211} = \frac{1}{2}\lambda_3, \ t_{1212} = t_{2112} = \frac{1}{2}\lambda_4,$$
$$t_{1212} = \frac{1}{2}\lambda_5, \ t_{2121} = \frac{1}{2}\lambda_5^*,$$
$$t_{1112} = t_{1211} = \frac{1}{2}\lambda_6, \ t_{1121} = t_{2111} = \frac{1}{2}\lambda_6^*,$$
$$t_{1222} = t_{2212} = \frac{1}{2}\lambda_7, \ t_{2221} = \frac{1}{2}\lambda_7^*.$$

(5)

The stability of the 2HDM potential requires that there is no direction in field space along which the potential tends to minus infinity, i.e., it is the BFB. In general, the quartic part of the scalar potential, V_4, is non-negative for arbitrarily large values of the component fields, but the quadratic part of the scalar potential, V_2, can take negative
values for at least some values of the fields [6]. Considering only the quartic part V_4, the condition for stability (the BFB) of the scalar potential in the 2HDM is equivalent to the co-positivity or semi-positive definiteness of the tensor $T = (t_{ijkl})$ given by the Higgs quartic coupling λ_i, i.e. $V_4(\Phi_1, \Phi_2) \geq 0$. When $\lambda_6 = \lambda_7 = 0$ and λ_5 is real, the vacuum stability conditions of 2HDM potential [4,9,10,12–14] are the following:

$$\lambda_1 > 0, \lambda_2 > 0, \lambda_3 + 2\sqrt{\lambda_1\lambda_2} \geq 0, \lambda_4 - |\lambda_5| + 2\sqrt{\lambda_1\lambda_2} \geq 0.$$

In 2016, Kannike [15–17] presented the vacuum stability conditions of the scalar potential of two Higgs doublets in the 2HDM with explicit CP conservation. Chauhan [18] derived analytic necessary and sufficient conditions for the vacuum stability of the left-right symmetric model, and gave the sufficient conditions for successful symmetry breaking. Recently, Song [19] showed the analytical sufficient and necessary conditions of the co-positivity of the tensor $T = (t_{ijkl})$ with the real numbers λ_i ($i = 5, 6, 7$), and moreover, the vacuum stability conditions of scalar potential for the 2HMD with explicit CP conservation was obtained. For more details about the BFB or the vacuum stability conditions of the 2HDM potential, see Refs. [10,11,20,21] for 2HDM with CP conservation; Refs. [7,21] for the most general 2HDM; Refs. [6,21,22] for 2HDM with CP conservation and CP violation; Ref. [23] for 2HDM handled numerically and others references that are no cited here.

In this paper, we provide three new analytical sufficient conditions for the bounded-from-below or the vacuum stability of scalar potential for a general 2HDM by using the co-positivity of 4th-order 2-dimensional symmetric real tensor. A sufficient and necessary condition of the vacuum stability of the general 2HDM potential is given in theory, which contains the vacuum stability condition of the general 2HDM potential with \mathbb{Z}_2 symmetry as a special case. Then, we apply this conclusion to derive the analytical analyticl necessary conditions of the vacuum stability of a general 2HDM scalar potential. Meanwhile, the analytical sufficient conditions and necessary conditions are obtained for the semi-positive definiteness of a class of 4th-order 2-dimensional complex tensor.

2 Co-positivity criteria

The co-positivity of a matrix $M = (\mu_{ij})$ has been applied to test the vacuum stability of the 2HDM in Refs. [15–18]. It is known well that a 2×2 symmetric real matrix $M = (\mu_{ij})$ is co-positive, i.e., for all non-negative vectors $x = (x_1, x_2)^\top \in \mathbb{R}^2$, the quadratic form

$$x^\top M x = \mu_{11} x_1^2 + 2\mu_{12} x_1 x_2 + \mu_{22} x_2^2 \geq 0,$$

is positive definite.
if and only if [24–26]

\[\mu_{11} \geq 0, \mu_{22} \geq 0 \text{ and } \mu_{12} + \sqrt{\mu_{11} \mu_{22}} \geq 0. \]

(6)

The co-positivity of a symmetric real tensor has been used to the SM in literature to obtain vacuum stability conditions in Refs. [15, 19, 27–30]. A 4th-order n-dimensional symmetric real tensor \(T = (t_{ijkl}) \) is co-positive [31–36] if for all non-negative vectors \(x = (x_1, x_2, \cdots, x_n)^\top \in \mathbb{R}^n \), the quartic form

\[T x^4 = \sum_{i,j,k,l=1}^n t_{ijkl} x_i x_j x_k x_l \geq 0. \]

Let \(t_{1111} = \alpha_0 > 0 \) and \(t_{2222} = \alpha_4 > 0 \). Recently, Song and Li [28] presented the analytical expressions of co-positivity of a 4th-order 2-dimensional symmetric \(T \) with the help of the update version ([33]) of Ulrich and Watson’s result [37]. Let \(T = (t_{ijkl}) \) be a 4th-order 2-dimensional symmetric real tensor with its entires

\[t_{1111} = \alpha_0, t_{2222} = \alpha_4, t_{1112} = \frac{1}{4} \alpha_1, t_{1122} = \frac{1}{6} \alpha_2, t_{1222} = \frac{1}{4} \alpha_3. \]

Then the quartic form

\[T x^4 = a_0 x_1^4 + a_1 x_1^3 x_2 + a_2 x_1^2 x_2^2 + a_3 x_1 x_2^3 + a_4 x_2^4 \geq 0 \]

(7)

for all \(x_1 \geq 0, x_2 \geq 0 \) if and only if

1. \(\Delta \leq 0, \alpha_1 \sqrt{a_4} + \alpha_3 \sqrt{a_0} > 0 \);
2. \(\alpha_1 \geq 0, \alpha_3 \geq 0, 2 \sqrt{\alpha_0 a_4} + \alpha_2 \geq 0 \);
3. \(\Delta \geq 0, |\alpha_1 \sqrt{a_4} - \alpha_3 \sqrt{a_0}| \leq 4 \sqrt{\alpha_0 a_2 a_4 + 2 \alpha_0 a_4 \sqrt{\alpha_0 a_4}}, \)
 (i) \(-2 \sqrt{\alpha_0 a_4} \leq \alpha_2 \leq 6 \sqrt{\alpha_0 a_4} \),
 (ii) \(\alpha_2 > 6 \sqrt{\alpha_0 a_4} \)
 \[\alpha_1 \sqrt{a_4} + \alpha_3 \sqrt{a_0} \geq -4 \sqrt{\alpha_0 a_2 a_4 - 2 \alpha_0 a_4 \sqrt{\alpha_0 a_4}}, \]

where \(\Delta = 4(12 \alpha_0 a_4 - 3 \alpha_1 a_3 + \alpha_2^3) - (72 \alpha_0 a_2 a_4 + 9 \alpha_1 a_2 a_3 - 2 \alpha_2^3 - 27 \alpha_0 a_3^2 - 27 \alpha_1^2 a_4^2)^2. \)

Song and Qi [29, Theorem 3.7] gave a stronger sufficient condition for the co-positivity of a symmetric real tensor \(T = (t_{ijkl}) \). That is, \(T x^4 \geq 0 \) for all \(x_1 \geq 0, x_2 \geq 0 \) if

\[\beta = \alpha_1 + 4 \sqrt{\alpha_3^3 a_4} \geq 0, \gamma = \alpha_3 + 4 \sqrt{\alpha_0 a_4^3} \geq 0, \]
\[\alpha_2 - 6 \sqrt{\alpha_0 a_4} + 2 \sqrt{\beta \gamma} \geq 0. \]

(8)
Song [19] obtained an analytical sufficient and necessary condition for the co-positivity of a symmetric real tensor \(T(\rho, \theta) = (t_{ijk}(\rho, \theta)) \) with two parameters \(\rho \in [0, 1] \) and \(\theta \in \mathbb{R} \),

\[
\begin{align*}
t_{1111} &= \Lambda_1, t_{2222} = \Lambda_2, \\
t_{1122} &= \frac{1}{6}(\Lambda_3 + \Lambda_4 \rho^2 + \Lambda_5 \rho^2 \cos 2\theta), \\
t_{1112} &= \frac{1}{2} \Lambda_6 \rho \cos \theta, \\
t_{1222} &= \frac{1}{2} \Lambda_7 \rho \cos \theta.
\end{align*}
\] (9)

That is, \(\Lambda_1 > 0, \Lambda_2 > 0 \), the quartic form

\[
T(\rho, \theta) x^4 \geq \Lambda_1 x_1^4 + \Lambda_2 x_2^4 + (\Lambda_3 + \Lambda_4 \rho^2 + \Lambda_5 \rho^2 \cos 2\theta) x_1^2 x_2^2 + 2(\rho \Lambda_6 \cos \theta) x_1^3 x_2 + 2(\rho \Lambda_7 \cos \theta) x_1 x_2^3 \geq 0,
\] (10)

for all \(x_1 \geq 0, x_2 \geq 0 \) if and only if

(a) \(\Lambda_6 = \Lambda_7 = 0, \Lambda_3 + 2\sqrt{\Lambda_1 \Lambda_2} \geq 0, \Lambda_3 + \Lambda_4 - |\Lambda_5| + 2\sqrt{\Lambda_1 \Lambda_2} \geq 0; \)

(b) \(\Delta \geq 0, \Lambda_3 + 2\sqrt{\Lambda_1 \Lambda_2} \geq 0, \)

\[
|\Lambda_6 \sqrt{\Lambda_2} - \Lambda_7 \sqrt{\Lambda_1}| \leq 2\sqrt{\Lambda_1 \Lambda_2 (\Lambda_3 + \Lambda_4 + \Lambda_5)} + 2\Lambda_1 \Lambda_2 \sqrt{\Lambda_1 \Lambda_2},
\]

(i) \(-2\sqrt{\Lambda_1 \Lambda_2} \leq \Lambda_3 + \Lambda_4 + \Lambda_5 \leq 6\sqrt{\Lambda_1 \Lambda_2}, \)

(ii) \(\Lambda_3 + \Lambda_4 + \Lambda_5 > 6\sqrt{\Lambda_1 \Lambda_2} \) and

\[
|\Lambda_6 \sqrt{\Lambda_2} + \Lambda_7 \sqrt{\Lambda_1}| \leq 2\sqrt{\Lambda_1 \Lambda_2 (\Lambda_3 + \Lambda_4 + \Lambda_5)} - 2\Lambda_1 \Lambda_2 \sqrt{\Lambda_1 \Lambda_2},
\]

where \(\Delta = 4(12\Lambda_1 \Lambda_2 - 12\Lambda_6 \Lambda_7 + (\Lambda_3 + \Lambda_4 + \Lambda_5)^2) - (72\Lambda_1 \Lambda_2 (\Lambda_3 + \Lambda_4 + \Lambda_5) + 36\Lambda_6 \Lambda_7 (\Lambda_3 + \Lambda_4 + \Lambda_5) - 2(\Lambda_3 + \Lambda_4 + \Lambda_5)^3 - 108\Lambda_1 \Lambda_2^2 - 108\Lambda_6 \Lambda_7)^2. \)

3 Vacuum stability of the general 2HDM potential

3.1 Sufficient conditions

In this section, we mainly give the vacuum stability conditions of the 2HDM potential (1) with explicit CP violation. We rewrite the quartic
part of such a 2HDM potential as follow

\[V_4(\Phi_1, \Phi_2) = \sum_{i,j,k,l=1}^{2} t_{ijkl}(\Phi^*_i \Phi_j)(\Phi^*_k \Phi_l) \]
\[= \lambda_1(\Phi^*_1 \Phi_1)^2 + \lambda_2(\Phi^*_2 \Phi_2)^2 \]
\[+ \lambda_3(\Phi^*_1 \Phi_1)(\Phi^*_2 \Phi_2) + \lambda_4(\Phi^*_1 \Phi_2)(\Phi^*_2 \Phi_1) \]
\[+ \frac{\lambda_5}{2}(\Phi^*_1 \Phi_2)^2 + \frac{\lambda_6^*}{2}(\Phi^*_2 \Phi_1)^2 \]
\[+ (\Phi^*_1 \Phi_1)(\lambda_6 \Phi^*_1 \Phi_2 + \lambda_6^* \Phi^*_2 \Phi_1) \]
\[+ (\Phi^*_2 \Phi_2)(\lambda_7 \Phi^*_1 \Phi_2 + \lambda_7^* \Phi^*_2 \Phi_1). \]

(11)

Let \(\phi_i = |\Phi_i| = \sqrt{\Phi^*_i \Phi_i} \), the modulus of \(\Phi_i \) for \(i = 1, 2 \). Then

\[\Phi^*_1 \Phi_2 = \phi_1 \phi_2 e^{i \theta} \] and \(\Phi^*_2 \Phi_1 = \phi_1 \phi_2 e^{-i \theta}, \]

where \(\theta \) is argument of the complex number \(\phi_k \) \((k = 5, 6, 7) \). Then

\[\lambda_5 = |\lambda_5| e^{i \varphi_5}, \lambda_6 = |\lambda_6| e^{i \varphi_6}, \lambda_7 = |\lambda_7| e^{i \varphi_7}, \]

So, we have

\[V_4(\Phi_1, \Phi_2) = \lambda_1 \phi_1^4 + \lambda_2 \phi_2^4 + \lambda_3 \phi_1^2 \phi_2^2 + \lambda_4 \rho^2 \phi_1^2 \phi_2^2 \]
\[+ \frac{|\lambda_5|}{2} (e^{i(\varphi_5 + 2\theta)} + e^{-i(\varphi_5 + 2\theta)}) \phi_1^2 \phi_2^2 \rho^2 \]
\[+ |\lambda_6|(e^{i(\varphi_6 + \theta)} + e^{-i(\varphi_6 + \theta)}) \phi_1^3 \phi_2 \rho \]
\[+ |\lambda_7|(e^{i(\varphi_7 + \theta)} + e^{-i(\varphi_7 + \theta)}) \phi_1 \phi_2^3 \rho \]
\[= \lambda_1 \phi_1^4 + \lambda_2 \phi_2^4 + \lambda_3 \phi_1^2 \phi_2^2 + \lambda_4 \rho^2 \phi_1^2 \phi_2^2 \]
\[+ |\lambda_5| \phi_1^2 \phi_2^2 \rho^2 \cos(\varphi_5 + 2\theta) \]
\[+ 2|\lambda_6| \phi_1^3 \phi_2 \rho \cos(\varphi_6 + \theta) \]
\[+ 2|\lambda_7| \phi_1 \phi_2^3 \rho \cos(\varphi_7 + \theta) \]
\[= \lambda_1 \phi_1^4 + \lambda_2 \phi_2^4 + \lambda_3 \phi_1^2 \phi_2^2 + \lambda_4 \rho^2 \phi_1^2 \phi_2^2 \]
\[+ |\lambda_5| \phi_1^2 \phi_2^2 \rho^2 (\cos \varphi_5 \cos 2\theta - \sin \varphi_5 \sin 2\theta) \]
\[+ 2|\lambda_6| \phi_1^3 \phi_2 \rho (\cos \varphi_6 \cos \theta - \sin \varphi_6 \sin \theta) \]
\[+ 2|\lambda_7| \phi_1 \phi_2^3 \rho (\cos \varphi_7 \cos \theta - \sin \varphi_7 \sin \theta). \]

Obviously, \(\text{Re} \lambda_k = |\lambda_k| \cos \varphi_k, \text{Im} \lambda_k = |\lambda_k| \sin \varphi_k, (k = 5, 6, 7) \). Then,
noticing \(\sin 2\theta = 2\sin \theta \cos \theta \), we have

\[
V'_4(\phi_1, \phi_2) = \lambda_1 \phi'_1 + \lambda_2 \phi'_2 + (\lambda_3 + \lambda_4 \rho^2 + \text{Re}\lambda_5 \rho^2 \cos 2\theta) \phi'_1 \phi'_2
\]
\[
+ 2(\rho \text{Re}\lambda_6 \cos \theta) \phi'_1 \phi_2 + 2(\rho \text{Re}\lambda_7 \cos \theta) \phi'_2 \phi_1
\]
\[
- 2\rho \phi_1 \phi_2 (\text{Im}\lambda_5 \rho \phi_1 \phi_2 \sin \theta \cos \theta)
\]
\[
+ \text{Im}\lambda_6 \phi'_1 \sin \theta + \text{Im}\lambda_7 \phi'_2 \sin \theta)
\]
\[
= V'_4(\phi_1, \phi_2) + V''_4(\phi_1, \phi_2),
\]
where

\[
V'_4(\phi_1, \phi_2) = \lambda_1 \phi'_1 + \lambda_2 \phi'_2 + (\lambda_3 + \lambda_4 \rho^2 + \text{Re}\lambda_5 \rho^2 \cos 2\theta) \phi'_1 \phi'_2
\]
\[
+ 2(\rho \text{Re}\lambda_6 \cos \theta) \phi'_1 \phi_2 + 2(\rho \text{Re}\lambda_7 \cos \theta) \phi'_2 \phi_1
\]
\[
V''_4(\phi_1, \phi_2) = -2(\rho \sin \theta)[(\rho \cos \theta) \text{Im}\lambda_5 \phi_1 \phi_2
\]
\[
+ \text{Im}\lambda_6 \phi'_2 + \text{Im}\lambda_7 \phi'_2] \phi_1 \phi_2.
\]

Applying the co-positivity of a real tensor (9) with

\[
\Lambda_i = \lambda_i \ (i = 1, 2, 3, 4), \Lambda_k = \text{Re}\lambda_k \ (k = 5, 6, 7)
\]
to obtain that \(\lambda_1 > 0, \lambda_2 > 0 \),

\[
V'_4(\phi_1, \phi_2) \geq 0 \text{ for all } \phi_1, \phi_2
\]
if and only if

(I) \(\text{Re}\lambda_6 = \text{Re}\lambda_7 = 0, \lambda_3 + 2\sqrt{\lambda_1 \lambda_2} \geq 0 \),

\[
\lambda_3 + \lambda_4 - |\text{Re}\lambda_5| + 2\sqrt{\lambda_1 \lambda_2} \geq 0;
\]

(II) \(\Delta \geq 0, \lambda_3 + 2\sqrt{\lambda_1 \lambda_2} \geq 0 \),

\[
|\text{Re}\lambda_6 \sqrt{\lambda_2} - \text{Re}\lambda_7 \sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1 \lambda_2}(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) + 2\lambda_1 \lambda_2 \sqrt{\lambda_1 \lambda_2},
\]

(i) \(-2\sqrt{\lambda_1 \lambda_2} \leq \lambda_3 + \lambda_4 + \text{Re}\lambda_5 \leq 6\sqrt{\lambda_1 \lambda_2} \),

(ii) \(\lambda_3 + \lambda_4 + \text{Re}\lambda_5 > 6\sqrt{\lambda_1 \lambda_2} \) and

\[
|\text{Re}\lambda_6 \sqrt{\lambda_2} + \text{Re}\lambda_7 \sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1 \lambda_2}(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) - 2\lambda_1 \lambda_2 \sqrt{\lambda_1 \lambda_2},
\]

where \(\Delta = 4(12\lambda_1 \lambda_2 - 12\text{Re}\lambda_6 \text{Re}\lambda_7 + (\lambda_3 + \lambda_4 + \text{Re}\lambda_5)^2) - (72\lambda_1 \lambda_2(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) + 36\text{Re}\lambda_6 \text{Re}\lambda_7)(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) - 2(\lambda_3 + \lambda_4 + \text{Re}\lambda_5)^3 - 108\lambda_1 (\text{Re}\lambda_7)^2 - 108(\text{Re}\lambda_6)^2 \lambda_2)^2 \).

After making simple calculations (\(\sin \theta \neq 0 \)), we have

\[
V''_4(\phi_1, \phi_2) \geq 0 \text{ for all } \phi_1, \phi_2
\]
if and only if

\[
\begin{cases}
\text{Im}\lambda_6 \phi'_1 + (\rho \cos \theta) \text{Im}\lambda_5 \phi_1 \phi_2 + \text{Im}\lambda_7 \phi'_2 \geq 0, & \sin \theta < 0,
\text{Im}\lambda_6 \phi'_1 + (\rho \cos \theta) \text{Im}\lambda_5 \phi_1 \phi_2 + \text{Im}\lambda_7 \phi'_2 \leq 0, & \sin \theta > 0.
\end{cases}
\]
By the co-positivity of a real matrix (6) with
\[\mu_{11} = \text{Im}\lambda_6, \mu_{12} = (\rho \cos \theta)\text{Im}\lambda_5, \mu_{22} = \text{Im}\lambda_7, \]
we obtain that
\[\text{Im}\lambda_6 \phi_1^2 + (\rho \cos \theta)\text{Im}\lambda_5 \phi_1 \phi_2 + \text{Im}\lambda_7 \phi_2^2 \geq 0 \]
for all \(\phi_1, \phi_2 \) if and only if
\[\text{Im}\lambda_6 \geq 0, \text{Im}\lambda_7 \geq 0, (\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0. \]

Case 1: \(\text{Im}\lambda_5 \geq 0. \)
The function \(g(\rho \cos \theta) = (\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \) reaches its minimum at \(\rho \cos \theta = -1 \), so for all \(\rho \cos \theta \in [-1, 1] \), we have
\[(\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0 \iff -\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0. \]

Case 2: \(\text{Im}\lambda_5 < 0. \)
The function \(g(\rho \cos \theta) = (\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \) reaches its minimum at \(\rho \cos \theta = 1 \), so for all \(\rho \cos \theta \in [-1, 1] \), we have
\[(\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0 \iff \text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0. \]

Therefore, for any real number \(\text{Im}\lambda_5 \), we have
\[(\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0 \iff -|\text{Im}\lambda_5| + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0. \]

Similarly, we also have
\[\text{Im}\lambda_6 \phi_1^2 + (\rho \cos \theta)\text{Im}\lambda_5 \phi_1 \phi_2 + \text{Im}\lambda_7 \phi_2^2 \leq 0 \]
for all \(\phi_1, \phi_2 \) if and only if
\[-\text{Im}\lambda_6 \phi_1^2 - (\rho \cos \theta)\text{Im}\lambda_5 \phi_1 \phi_2 - \text{Im}\lambda_7 \phi_2^2 \geq 0 \]
which is equivalent to the co-positivity of \(2 \times 2 \) matrix \(M = (\mu_{ij}) \) with its entries,
\[\mu_{11} = -\text{Im}\lambda_6, \mu_{12} = -(\rho \cos \theta)\text{Im}\lambda_5, \mu_{22} = -\text{Im}\lambda_7. \]

This means that
\[-\text{Im}\lambda_6 \geq 0, -\text{Im}\lambda_7 \geq 0, -(\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0, \]
that is,
\[\text{Im}\lambda_6 \leq 0, \text{Im}\lambda_7 \leq 0, -(\rho \cos \theta)\text{Im}\lambda_5 + 2\sqrt{\text{Im}\lambda_6 \cdot \text{Im}\lambda_7} \geq 0. \]
Similarly, the function

\[f(\rho \cos \theta) = - (\rho \cos \theta) \text{Im} \lambda_5 + 2 \sqrt{\text{Im} \lambda_6 \cdot \text{Im} \lambda_7} \]

reaches its minimum at \(\rho \cos \theta = 1 \) (\(\text{Im} \lambda_5 \geq 0 \)) or \(-1 \) (\(\text{Im} \lambda_5 < 0 \)), and hence, for any real number \(\text{Im} \lambda_5 \),

\[-(\rho \cos \theta) \text{Im} \lambda_5 + 2 \sqrt{\text{Im} \lambda_6 \cdot \text{Im} \lambda_7} \geq 0 \iff -|\text{Im} \lambda_5| + 2 \sqrt{\text{Im} \lambda_6 \cdot \text{Im} \lambda_7} \geq 0.\]

So, we get the conclusion that

\[V''_4(\phi_1, \phi_2) \geq 0 \text{ for all } \phi_1, \phi_2 \]

if and only if

\[(III) \quad \text{Im} \lambda_6 \cdot \text{Im} \lambda_7 \geq 0, \quad -|\text{Im} \lambda_5| + 2 \sqrt{\text{Im} \lambda_6 \cdot \text{Im} \lambda_7} \geq 0.\]

In summary, we prove the analytic conditions (I), (II) and (III) assure the vacuum stability of the 2HDM potential with explicit CP violation. At the same time, we also obtain the semi-positive definiteness of a 4th-order 2-dimensional complex tensor \(T = (t_{ijkl}) \) defined by the Eq. (5).

In term of Eq. (8), we also may obtain a stronger sufficient condition. That is, \(V_4(\phi_1, \phi_2) \geq 0 \) for all \(\phi_1, \phi_2 \) if for all \(\rho \in [0, 1] \) and all \(\theta \in [0, 2\pi] \),

\[
\beta(\theta) = 2(\rho |\lambda_6| \cos(\varphi_6 + \theta)) + 4 \sqrt{\lambda_1^2 \lambda_2} \geq 0,
\gamma(\theta) = 2(\rho |\lambda_7| \cos(\varphi_7 + \theta)) + 4 \sqrt{\lambda_1^2 \lambda_2} \geq 0,
(\lambda_3 + \lambda_4 \rho^2 + |\lambda_5| \rho^2 \cos(\varphi_5 + 2\theta)) - 6 \sqrt{\lambda_1 \lambda_2} + 2 \sqrt{\beta(\theta) \gamma(\theta)} \geq 0.
\]

Which is equivalent to

\[(IV) \quad \beta = 2 \sqrt{\lambda_1^2 \lambda_2} - |\lambda_6| \geq 0, \quad \gamma = 2 \sqrt{\lambda_1^2 \lambda_2} - |\lambda_7| \geq 0,
\lambda_3 - 6 \sqrt{\lambda_1 \lambda_2} + 4 \sqrt{\beta \gamma} \geq 0,
\lambda_3 + \lambda_4 - |\lambda_5| - 6 \sqrt{\lambda_1 \lambda_2} + 4 \sqrt{\beta \gamma} \geq 0.
\]

Similarly, \(V'_4(\phi_1, \phi_2) \geq 0 \) for all \(\phi_1, \phi_2 \) if

\[(IV') \quad \beta' = 2 \sqrt{\lambda_1^2 \lambda_2} - |\text{Re} \lambda_6| \geq 0, \quad \gamma' = 2 \sqrt{\lambda_1^2 \lambda_2} - |\text{Re} \lambda_7| \geq 0,
\lambda_3 - 6 \sqrt{\lambda_1 \lambda_2} + 4 \sqrt{\beta' \gamma'} \geq 0,
\lambda_3 + \lambda_4 - |\text{Re} \lambda_5| - 6 \sqrt{\lambda_1 \lambda_2} + 4 \sqrt{\beta' \gamma'} \geq 0.
\]

Remark 3.1. Four analyticical sufficient conditions are following:
(1) \(\text{Re}\lambda_6 = \text{Re}\lambda_7 = 0 \), the conditions (I) and (III);
(2) \(\text{Re}\lambda_6 \neq 0 \) or \(\text{Re}\lambda_7 \neq 0 \), the condition (II) and (III);
(3) the conditions (IV') and and (III);
(4) the conditions (IV).

3.2 Sufficient and necessary conditions

In this subsection, \(V_4(\Phi_1, \Phi_2) \) is rewritten as follows \((\lambda_1 > 0, \lambda_2 > 0)\),

\[
V_4(\Phi_1, \Phi_2) = A\rho^2 + B\rho + C = f(\rho),
\]

\[
A = a\phi_1^2\phi_2^2, \quad B = b\phi_1\phi_2, \quad C = \lambda_1\phi_1^4 + \lambda_2\phi_2^4 + \lambda_3\phi_1^2\phi_2^2,
\]

\[
a = \lambda_4 - \text{Re}\lambda_5 + 2(\text{Re}\lambda_5 \cos \theta - \text{Im}\lambda_5 \sin \theta) \cos \theta = \lambda_4 + |\lambda_5| \cos(\varphi_5 + 2\theta),
\]

\[
b = 2(\text{Re}\lambda_6 \phi_1^2 + \text{Re}\lambda_7 \phi_2^2) \cos \theta - 2(\text{Im}\lambda_6 \phi_1^2 + \text{Im}\lambda_7 \phi_2^2) \sin \theta = 2|\lambda_6|\phi_1^2 \cos(\varphi_6 + \theta) + 2|\lambda_7|\phi_2^2 \cos(\varphi_7 + \theta).
\]

The quadratic function \(f(\rho) \) is non-negative about a variable \(\rho \in [0, 1] \) if and only if its minimum is non-negative in the interval \([0, 1]\), and so, its function value is non-negative at the boundary points \(\rho = 0, 1 \) and the unique extremum point \(\rho_0 = -\frac{B}{2A} \in [0, 1](A > 0) \). That is,

\[
f(\rho) \geq 0 \Leftrightarrow \begin{cases}
 f(-\frac{B}{2A}) = \frac{4AC - B^2}{4A} \geq 0, \quad -\frac{B}{2A} \in [0, 1], \\
 f(0) \geq 0,
 f(1) \geq 0.
\end{cases}
\]

The graph-like of \(f(\rho) \) is as shown below:

![Figure 1: Graph of \(f(\rho) \)](image-url)
Proposition 1. \(V_4(\Phi_1, \Phi_2) \geq 0 \) if and only if
\[
\begin{align*}
4AC - B^2 &\geq 0, \quad -2A \leq B \leq 0; \\
C &\geq 0; \\
A + B + C &\geq 0.
\end{align*}
\]

It is obvious that if \(\lambda_6 = \lambda_7 = 0 \), then \(B = 0 \), the symmetry axis \(-\frac{B}{2A} = 0 \), and hence, \(V_4(\Phi_1, \Phi_2) \geq 0 \) if and only if
\(C \geq 0 \) and \(A + C \geq 0 \).

For the 2HDM with \(\mathbb{Z}_2 \) symmetry [11], the quartic part of the general 2HDM scalar potential is
\[
V_4^{\mathbb{Z}_2}(\Phi_1, \Phi_2) = \lambda_1(\Phi_1^* \Phi_1)^2 + \lambda_2(\Phi_2^* \Phi_2)^2 + \lambda_3(\Phi_1^* \Phi_1)(\Phi_2^* \Phi_2) + \lambda_4(\Phi_1^* \Phi_2)(\Phi_2^* \Phi_1) \\
+ \frac{\lambda_5}{2}(\Phi_1^* \Phi_2)^2 + \frac{\lambda_6}{2}(\Phi_2^* \Phi_1)^2.
\]

Therefore, \(V_4^{\mathbb{Z}_2}(\Phi_1, \Phi_2) \geq 0 \) if and only if
\[
\begin{align*}
C &= \lambda_1 \phi_1^4 + \lambda_2 \phi_2^4 + \lambda_3 \phi_1^2 \phi_2^2 \\
A + C &= \lambda_1 \phi_1^4 + \lambda_2 \phi_2^4 + (\lambda_3 + \lambda_4 + |\lambda_5| \cos(\varphi_5 + 2\theta)) \phi_1^2 \phi_2^2 \\
&\geq 0.
\end{align*}
\]

It is clear that \(C \geq 0 \iff \lambda_3 + 2\sqrt{\lambda_1 \lambda_2} \geq 0, \)
\[A + C \geq 0 \iff \lambda_3 + \lambda_4 + |\lambda_5| \cos(\varphi_5 + 2\theta) + 2\sqrt{\lambda_1 \lambda_2} \geq 0, \forall \theta \in [0, 2\pi]
\iff \lambda_3 + \lambda_4 - |\lambda_5| + 2\sqrt{\lambda_1 \lambda_2} \geq 0.
\]

Corollary 2. \(V_4^{\mathbb{Z}_2}(\Phi_1, \Phi_2) \geq 0 \) if and only if \(\lambda_1 \geq 0, \lambda_2 \geq 0, \)
\[(V) \quad \lambda_3 + 2\sqrt{\lambda_1 \lambda_2} \geq 0, \lambda_3 + \lambda_4 - |\lambda_5| + 2\sqrt{\lambda_1 \lambda_2} \geq 0.
\]

This condition \((V)\) is well-known for the inert doublet model [4,9,10,16,23].

3.3 Necessary conditions

In this subsection, \(V_4(\Phi_1, \Phi_2) \) is rewritten as follows \(\lambda_1 > 0, \lambda_2 > 0, \)
\[
V_4(\Phi_1, \Phi_2) = f(\rho) = A\rho^2 + B\rho + C,
\]
\[
f(1) = A + B + C = \lambda_1 \phi_1^4 + \lambda_2 \phi_2^4 + (\lambda_3 + \lambda_4 - \text{Re}\lambda_5 + 2\text{Re}\lambda_5 \cos^2 \theta) \phi_1^2 \phi_2^2 \\
+ 2(\text{Re}\lambda_6 \cos \theta) \phi_1^4 \phi_2 + 2(\text{Re}\lambda_7 \cos \theta) \phi_2^4 \phi_1 \\
- 2(\sin \theta) \text{Im}\lambda_5 \phi_1 \phi_2 \\
+ \text{Im}\lambda_6 \phi_1^2 + \text{Im}\lambda_7 \phi_2^2 \phi_1 \phi_2.
\]
Obviously, we have
\[f(\rho) \geq 0, \text{ for all } \rho \in [0, 1] \Rightarrow f(0) \geq 0, f(1) \geq 0. \]

Then \(V_2(\Phi_1, \Phi_2) \geq 0 \) implies that \(f(0) = C \geq 0 \), which is equivalent to

\[
\text{(VI)} \quad \lambda_3 + 2\sqrt{\lambda_1}\lambda_2 \geq 0.
\]

This is a necessary condition of the vacuum stability of the general 2HDM potential. Clearly, the other necessary condition is some conditions such that \(f(1) = A + B + C \geq 0 \). By Eq. (18), it is known that \(A + B + C \) may be regarded as a quartic form with two parameters \(t = \sin \theta \) and \(s = \cos \theta \) with \(s^2 + t^2 = 1 \). So, when \(s = \sin \theta = 0 \) and \(t = \cos \theta = \pm 1 \), the inequality

\[
\lambda_1\phi_1^4 + \lambda_2\phi_2^4 + (\lambda_3 + \lambda_4 + \text{Re}\lambda_5)\phi_1^2\phi_2^2 \pm 2\text{Re}\lambda_6\phi_1^3\phi_2 \pm 2\text{Re}\lambda_7\phi_1^2\phi_2 \geq 0
\]

is a necessary condition. From Eq. (7), it follows that the above inequality hold if and only if

1. \(\Delta \leq 0 \), \(\text{Re}\lambda_6\sqrt{\lambda_2} + \text{Re}\lambda_7\sqrt{\lambda_1} > 0 \);

2. \(\text{Re}\lambda_6 \geq 0 \), \(\text{Re}\lambda_7 \geq 0 \), \(\lambda_3 + \lambda_4 + \text{Re}\lambda_5 + 2\sqrt{\lambda_1}\lambda_2 \geq 0 \);

3. \(\Delta \geq 0 \),

\[
|\text{Re}\lambda_6\sqrt{\lambda_2} - \text{Re}\lambda_7\sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1}\lambda_2(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) + 2\lambda_1\lambda_2\sqrt{\lambda_1}\lambda_2,
\]

(i) \(-2\sqrt{\lambda_1}\lambda_2 \leq \lambda_3 + \lambda_4 + \text{Re}\lambda_5 \leq 6\sqrt{\lambda_1}\lambda_2 \),

(ii) \(\lambda_3 + \lambda_4 + \text{Re}\lambda_5 > 6\sqrt{\lambda_1}\lambda_2 \),

\[
\text{Re}\lambda_6\sqrt{\lambda_2} + \text{Re}\lambda_7\sqrt{\lambda_1} \geq -2\sqrt{\lambda_1}\lambda_2(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) - 2\lambda_1\lambda_2\sqrt{\lambda_1}\lambda_2.
\]

and

1'. \(\Delta \leq 0 \), \(-\text{Re}\lambda_6\sqrt{\lambda_2} - \text{Re}\lambda_7\sqrt{\lambda_1} > 0 \);

2'. \(-\text{Re}\lambda_6 \geq 0 \), \(-\text{Re}\lambda_7 \geq 0 \), \(\lambda_3 + \lambda_4 + \text{Re}\lambda_5 + 2\sqrt{\lambda_1}\lambda_2 \geq 0 \);

3'. \(\Delta \geq 0 \),

\[
|\text{Re}\lambda_6\sqrt{\lambda_2}+\text{Re}\lambda_7\sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1}\lambda_2(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) + 2\lambda_1\lambda_2\sqrt{\lambda_1}\lambda_2,
\]

(i') \(-2\sqrt{\lambda_1}\lambda_2 \leq \lambda_3 + \lambda_4 + \text{Re}\lambda_5 \leq 6\sqrt{\lambda_1}\lambda_2 \),

(ii') \(\lambda_3 + \lambda_4 + \text{Re}\lambda_5 > 6\sqrt{\lambda_1}\lambda_2 \),

\[
-\text{Re}\lambda_6\sqrt{\lambda_2} - \text{Re}\lambda_7\sqrt{\lambda_1} \geq -2\sqrt{\lambda_1}\lambda_2(\lambda_3 + \lambda_4 + \text{Re}\lambda_5) - 2\lambda_1\lambda_2\sqrt{\lambda_1}\lambda_2.
\]
Which is equivalent to

\[
\Re\lambda_6 = \Re\lambda_7 = 0, \lambda_3 + \lambda_4 + \Re\lambda_5 + 2\sqrt{\lambda_1\lambda_2} \geq 0;
\]
\[
\Re\lambda_6 \neq 0 \text{ or } \Re\lambda_7 \neq 0, \Delta \geq 0,
\]

\[
|\Re\lambda_6\sqrt{\lambda_2} - \Re\lambda_7\sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1\lambda_2}\lambda_3 + \lambda_4 + \Re\lambda_5 + 2\lambda_1\lambda_2 \sqrt{\lambda_1\lambda_2}.
\]

(VII) \(a \) \(-2\sqrt{\lambda_1\lambda_2} \leq \lambda_3 + \lambda_4 + \Re\lambda_5 \leq 6\sqrt{\lambda_1\lambda_2}, \)

\[
(b) \lambda_3 + \lambda_4 + \Re\lambda_5 > 6\sqrt{\lambda_1\lambda_2},
\]

\[
|\Re\lambda_6\sqrt{\lambda_2} + \Re\lambda_7\sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1\lambda_2}(\lambda_3 + \lambda_4 + \Re\lambda_5) - 2\lambda_1\lambda_2 \sqrt{\lambda_1\lambda_2}.
\]

If \(t = \cos\theta = 0 \) and \(s = \sin\theta = \pm 1 \), the inequality

\[
\lambda_1\phi_1^4 + \lambda_2\phi_2^4 + (\lambda_3 + \lambda_4 - \Re\lambda_5)\phi_1^2\phi_2^2 \pm 2\Im\lambda_6\phi_1^3\phi_2 \geq 0
\]

is a necessary condition also, and then, which is equivalent to

\[
\Im\lambda_6 = \Im\lambda_7 = 0, \lambda_3 + \lambda_4 - \Re\lambda_5 + 2\sqrt{\lambda_1\lambda_2} \geq 0;
\]
\[
\Im\lambda_6 \neq 0 \text{ or } \Im\lambda_7 \neq 0, \Delta' \geq 0,
\]

\[
|\Im\lambda_6\sqrt{\lambda_2} - \Im\lambda_7\sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1\lambda_2}(\lambda_3 + \lambda_4 - \Re\lambda_5) + 2\lambda_1\lambda_2 \sqrt{\lambda_1\lambda_2},
\]

(VIII) \((a') -2\sqrt{\lambda_1\lambda_2} \leq \lambda_3 + \lambda_4 - \Re\lambda_5 \leq 6\sqrt{\lambda_1\lambda_2}, \)

\[
(b') \lambda_3 + \lambda_4 - \Re\lambda_5 > 6\sqrt{\lambda_1\lambda_2},
\]

\[
|\Im\lambda_6\sqrt{\lambda_2} + \Im\lambda_7\sqrt{\lambda_1}| \leq 2\sqrt{\lambda_1\lambda_2}(\lambda_3 + \lambda_4 - \Re\lambda_5) - 2\lambda_1\lambda_2 \sqrt{\lambda_1\lambda_2},
\]

where \(\Delta' = 4(12\lambda_1\lambda_2 - 12\Im\lambda_6\Im\lambda_7 + (\lambda_3 + \lambda_4 - \Re\lambda_5)^2)^3 - (72\lambda_1\lambda_2(\lambda_3 + \lambda_4 - \Re\lambda_5) + 36\Im\lambda_6\Im\lambda_7(\lambda_3 + \lambda_4 - \Re\lambda_5) - 2(\lambda_3 + \lambda_4 - \Re\lambda_5)^3 - 108\lambda_1(\Im\lambda_7)^2 - 108(\Im\lambda_6)^2\lambda_2)^2. \)

Applying the Corollary 3.1 of Song and Qi [29] to \(V_4(\Phi_1, \Phi_2) \),

\[
V_4(\Phi_1, \Phi_2) = \lambda_1\phi_1^4 + \lambda_2\phi_2^4 + [\lambda_3 + \lambda_4\rho^2 + |\lambda_5|\rho^2\cos(\varphi_5 + 2\theta)]\phi_1^2\phi_2^2
\]
\[
+ 2|\lambda_6|\phi_1^3\phi_2\rho\cos(\varphi_6 + \theta) + 2|\lambda_7|\phi_1\phi_2^3\rho\cos(\varphi_7 + \theta)
\]

we obtain that \(V_4(\Phi_1, \Phi_2) \geq 0 \) implies that for all \(\rho \in [0, 1] \) and all
\(\theta \in [0, 2\pi], \)

\[
0 \leq 2 \left(\frac{1}{4} \times 2 \lambda_6 |\rho \cos(\varphi_6 + \theta) \right) \sqrt{\lambda_2} + 2 \left(\frac{1}{4} \times 2 \lambda_7 |\rho \cos(\varphi_7 + \theta) \right) \sqrt{\lambda_1} \\
+ \left(3 \times \frac{1}{6} (\lambda_3 + \lambda_4 \rho^2 + |\lambda_5|^2 \cos(\varphi_5 + 2\theta)) + \sqrt{\lambda_1 \lambda_2} \right) \sqrt{\lambda_1 \lambda_2}
\]

\[
= |\lambda_6| \sqrt{\lambda_2 \rho \cos(\varphi_6 + \theta)} + |\lambda_7| \sqrt{\lambda_1 \rho \cos(\varphi_7 + \theta)} \\
+ \frac{1}{2} \left(\lambda_3 + \lambda_4 \rho^2 + |\lambda_5|^2 \cos(\varphi_5 + 2\theta) + 2 \sqrt{\lambda_1 \lambda_2} \right) \sqrt{\lambda_1 \lambda_2}
\]

\[
= \text{Re} \lambda_6 \sqrt{\lambda_2 \rho \cos \theta} + \text{Re} \lambda_7 \sqrt{\lambda_2 \rho \cos \theta} \\
+ \frac{1}{2} \left(\lambda_3 + \lambda_4 \rho^2 + \text{Re} \lambda_5 \rho^2 \cos 2\theta + 2 \sqrt{\lambda_1 \lambda_2} \right) \sqrt{\lambda_1 \lambda_2} \\
- \text{Im} \lambda_6 \sqrt{\lambda_2 \rho \sin \theta} - \text{Im} \lambda_7 \sqrt{\lambda_1 \rho \sin \theta} - \frac{1}{2} \text{Im} \lambda_5 \sqrt{\lambda_1 \lambda_2^2} \sin 2\theta,
\]

and then, \(\rho = 1 \) and \(\theta = 0 \) or \(\pi \) or \(\frac{\pi}{2} \) or \(\frac{3\pi}{2} \), the above inequality must holds also. That is,

\[
(\lambda_3 + \lambda_4 + \text{Re} \lambda_5 + 2 \sqrt{\lambda_1 \lambda_2}) \sqrt{\lambda_1 \lambda_2} \\
\pm 2 \left(\text{Re} \lambda_6 \sqrt{\lambda_2} + \text{Re} \lambda_7 \sqrt{\lambda_1} \right) \geq 0 \\
(\text{IX}) \\
(\lambda_3 + \lambda_4 - \text{Re} \lambda_5 + 2 \sqrt{\lambda_1 \lambda_2}) \sqrt{\lambda_1 \lambda_2} \\
\pm 2 \left(\text{Im} \lambda_6 \sqrt{\lambda_2} + \text{Im} \lambda_7 \sqrt{\lambda_1} \right) \geq 0.
\]

Clearly, the condition (VI) is obtained if \(\rho = 0 \).

In summary, the conditions (VI), (VII), (VIII) and (IX) are the necessary conditions of the vacuum stability of the general 2HDM potential.

4 Conclusions

By means of the co-positive conditions of a 4th-order symmetry tensor, several analyticial sufficient conditions and necessary conditions are established for the vacuum stability of the general 2HDM potential, respectively. That is,

\[
\begin{cases}
(1) \text{ (I) and (III)}; \\
(2) \text{ Re} \lambda_6 \neq 0 \text{ or } \text{Re} \lambda_7 \neq 0, \text{ (II) and (III)}; \\
(3) \text{ (IV') and (III)}; \\
(4) \text{ (IV)}.
\end{cases}
\]
Four necessary conditions: (VI), (VII), (VIII) and (IX).

A sufficient and necessary condition is qualitatively showed for the vacuum stability of the general 2HDM potential, and then, applying it to derive the analytical necessary conditions for the vacuum stability of the general 2HDM potential. The vacuum stability condition (V) of the \mathbb{Z}_2 symmetry 2HDM potential is a special case.

Figure 2: Analytical conditions and the vacuum stability of the general 2HDM potential

References

