A LOWER BOUND OF THE NUMBER OF EDGES IN A GRAPH CONTAINING NO TWO CYCLES OF THE SAME LENGTH
摘要:In 1975, P. Erd\{o}s proposed the problem of determining the maximum number $f(n)$ of edges in a graph of $n$ vertices in which any two cycles are of different lengths. In this paper, it is proved that $$f(n)\geq n+32t-1$$ for $t=27720r+169 \,\ (r\geq 1)$ and $n\geq\frac{6911}{16}t^{2}+\frac{514441}{8}t-\frac{3309665}{16}$. Consequently, $\liminf\sb {n \to \infty} {f(n)-n \over \sqrt n} \geq \sqrt {2 + {2562 \over 6911}}.$
英文摘要:
[V1] | 2022-05-14 19:48:27 | chinaXiv:202205.00103V1 | 下载全文 |
1. 模糊集上endograph 度量和 Γ-convergence的关系 2022-08-13 |
2. 分次预胞腔代数 2022-08-07 |
3. 正则半群代数的广义胞腔性 2022-08-07 |
4. 计及灵活资源日内调节离散性的日前两阶段分布鲁棒机组组合——基于L1范数Wasserstein模糊集的稀疏建模与求解方法 2022-08-07 |
5. 考虑风功率预测条件误差和时空关联性的分布鲁棒机组组合模型及算法 2022-08-07 |
6. Copula熵:理论和应用 2022-07-28 |
7. 几个模糊集空间的性质 2022-06-30 |
8. 具有Lp度量的模糊集空间的性质 2022-06-20 |
9. 关于没有重复循环长度的图的大小 2022-05-15 |
10. 随机环境下上临界分支过程的非一致性Berry-Esseen估计 2022-05-12 |